Abstract:
Disclosed is an autopilot-coupled traffic alert and collision avoidance systems (AP TCAS). The AP TCAS includes a an AP/automatic flight control system (AFCS) that is configured to receive a vertical speed setting after the issuance of a preventive resolution advisory, wherein the aircraft vertical speed setting exceeds the maximum vertical speed allowed by the resolution advisory, the AP/AFCS being further configured to: (1) modify the aircraft vertical speed setting so as to be less than the maximum vertical speed, and relay the modified second aircraft vertical speed to an autopilot system of the aircraft to automatically cause the aircraft to fly at a vertical speed in accordance with the modified second vertical speed setting; and (2) relay a command to the autopilot system to initiate an automatic, corrective flight maneuver if a current vertical speed of the aircraft is within a predetermined amount of the maximum vertical speed.
Abstract:
In some examples, a system is configured to determine a reliability index for weather information received by a weather system. The reliability index may indicate a degree of confidence of the accuracy of the weather information. For example, a system may determine a weather product for each of one or more voxels of a plurality of voxels in a three-dimensional or four-dimensional volumetric buffer, and based on a combination of the weather product and the weather information, determine a reliability index for the weather product. The system may display a first visual representation of the weather product and a second visual representation of the corresponding reliability index.
Abstract:
Disclosed is an autopilot-coupled traffic alert and collision avoidance systems (AP TCAS). The AP TCAS includes a an AP/automatic flight control system (AFCS) that is configured to receive a vertical speed setting after the issuance of a preventive resolution advisory, wherein the aircraft vertical speed setting exceeds the maximum vertical speed allowed by the resolution advisory, the AP/AFCS being further configured to: (1) modify the aircraft vertical speed setting so as to be less than the maximum vertical speed, and relay the modified second aircraft vertical speed to an autopilot system of the aircraft to automatically cause the aircraft to fly at a vertical speed in accordance with the modified second vertical speed setting; and (2) relay a command to the autopilot system to initiate an automatic, corrective flight maneuver if a current vertical speed of the aircraft is within a predetermined amount of the maximum vertical speed.
Abstract:
A vertical profile display includes weather information for an aircraft. In some examples, the weather is displayed in the vertical profile display with a hazard band indication. The hazard band indication includes an upper limit line positioned within the vertical profile view at a position corresponding to an altitude greater than or equal to an altitude above which no hazardous weather cells were detected. In some examples, the vertical profile display also includes one or more weather icons, with each weather icon indicating a weather condition for a volume of space.
Abstract:
This disclosure is directed to methods, systems, and computer program products for automated avoidance of ground threats by an aircraft. In one example, a method includes determining, by one or more processing devices, whether a sufficient evasive maneuver for an aircraft to avoid a detected ground surface threat is performed via pilot controls of the aircraft within a selected threshold after an alert of the ground surface threat is outputted via one or more cockpit systems of the aircraft. The method further includes, in response to determining that a sufficient evasive maneuver via the pilot controls is not performed within the selected threshold, controlling, by the one or more processing devices, one or more flight systems of the aircraft to perform an automated evasive maneuver to avoid the ground surface threat.
Abstract:
A vertical profile display includes weather information for an aircraft. In some examples, the vertical profile display includes one or more weather icons, each weather icon indicating a weather condition for a volume of space at a particular altitude. Each weather icon is displayed within the vertical profile display at a portion of the vertical profile display corresponding to the altitude of the weather condition indicated by the particular weather icon.
Abstract:
In some examples, a ground obstacle detection system of an aircraft is configured to generate and display a graphical user interface (GUI) that includes a graphical representation of a detected obstacle with which the aircraft may collide during a ground operation and an indication of an area of unknown associated with the detected obstacle. Instead of, in addition to, a GUI that includes an indication of an area of unknown associated with an obstacle, in some examples, a ground obstacle detection system to generate a GUI that includes at least two windows that present different views of an aircraft. At least one of the windows may include a graphical representation of an obstacle that may not be visible in the view of another window.
Abstract:
Systems and methods for improving situational awareness on an in-trails procedures display. A radar system transmits a radar signal and receives and stores weather radar reflectivity values into a three-dimensional buffer. A processor determines whether any of the stored weather reflectivity values indicate the presence of a weather hazard and generates one or more weather hazard icons based on the stored weather reflectivity values. An in-trail procedures display device displays the generated weather hazard icons. Wake vortex information for other aircraft is generated and outputted on the in-trail procedures display. Also, the processor receives a request for an altitude change and generates an alert when the aircraft is determined not to be cleared to transition to the requested altitude based on a projected transition, any existing weather hazards, wake vortices of proximate aircraft, and in-trail procedures.
Abstract:
A flight deck system for providing progressive taxiing guidance is provided. The flight deck system comprises a controller configured to: generate a graphical insert to overlay a small portion of an active navigation display, the graphical insert providing a progressive depiction of upcoming travel surfaces on a cleared taxi route. The graphical insert comprises a non-linear map with non-linear scaling, a current travel surface alphanumeric indicator, and a current travel surface stick character representative of a current travel surface. The controller is further configured to position, on the graphical insert, a crossing travel surface sign, a first-turn travel surface stick character, and a second-turn travel surface stick character; update the position of the crossing travel surface sign, the first-turn travel surface stick character, and/or the second-turn travel surface stick character as the aircraft travels; and cause the graphical insert to be displayed as an overlay on the active navigation display.
Abstract:
Disclosed is an autopilot-coupled traffic alert and collision avoidance systems (AP TCAS). The AP TCAS includes a an AP/automatic flight control system (AFCS) that is configured to receive a vertical speed setting after the issuance of a preventive resolution advisory, wherein the aircraft vertical speed setting exceeds the maximum vertical speed allowed by the resolution advisory, the AP/AFCS being further configured to: (1) modify the aircraft vertical speed setting so as to be less than the maximum vertical speed, and relay the modified second aircraft vertical speed to an autopilot system of the aircraft to automatically cause the aircraft to fly at a vertical speed in accordance with the modified second vertical speed setting; and (2) relay a command to the autopilot system to initiate an automatic, corrective flight maneuver if a current vertical speed of the aircraft is within a predetermined amount of the maximum vertical speed.