Abstract:
In one embodiment a system including a resonator fiber-optic gyroscope configured to measure rotation rate is provided. The resonator fiber-optic gyroscope includes a sensing resonator have a first resonance frequency for a first laser beam propagation direction and a second resonance frequency for a second laser beam propagation direction, an optical mixer coupled to an output of the sensing resonator and configured to mix an output of the sensing resonator with a reference laser, wherein the optical mixer outputs a beat signal, and a resonance tracking electronics coupled to the optical mixer. The resonance tracking electronics are configured to demodulate the beat signal at a frequency offset to produce first in-phase and quadrature demodulated information, generate R-squared information from a sum of squares of the first in-phase and quadrature demodulated information, and demodulate the R-squared information at a resonance tracking modulation frequency.
Abstract:
A rare-earth-doped-fiber light source with wavelength stability includes a rare-earth doped fiber and an undoped fiber placed in proximity to each other and having the same host material and the same cross-sectional structure, a coupler configured to direct a first portion of pump power from a pump laser to the undoped fiber so the first portion of pump power was twice passed through the coupler; and a wavelength division multiplexer configured to input a second portion of pump power from the pump laser to the rare-earth doped fiber. The rare-earth doped fiber is an active medium for the broadband light source and includes a fiber core doped with rare-earth ions. The undoped fiber includes a rare-earth-dopant-free fiber core. The length of the undoped fiber is one of the same as that of the doped fiber or optimized to match a radiation sensitivity of the doped fiber.
Abstract:
A method of operating a resonator optical gyroscope includes generating optical signals having broadband frequency range; coupling optical signals into optical resonator (OR) to propagate in first direction and out of OR after optical signals pass through OR in first direction; applying phase modulation to optical signals coupled out of OR to generate phase-modulated optical signals; filtering first portion of phase-modulated optical signals to generate filtered, phase-modulated optical signals; generating first electrical signals indicative of power level of the filtered, phase-modulated optical signals and RIN; coupling second portion of phase-modulated optical signals into OR to propagate in second direction and out of OR after phase-modulated optical signals pass through the OR in second direction; generating second electrical signals indicative of power level of phase-modulated optical signals after passing through OR in second direction; and determining a rotation rate based on the first electrical signals and the second electrical signals.
Abstract:
A gyroscope comprises a source emitting a broadband beam, and a first waveguide arrangement that splits the beam into CCW and CW beams. First and second phase modulators are coupled to the waveguide arrangement and provide phase modulations or frequency shifts to the CCW and CW beams. An optical resonator is in communication with the phase modulators such that the CCW and CW beams are optically coupled into the resonator. A second waveguide arrangement receives the CCW and CW beams transmitted from the resonator. First and second RIN detectors are coupled to the second waveguide arrangement and respectively receive the CCW and CW beams. A rate detector receives the CCW and CW beams. A rate calculation unit receives intensity noise signals from the RIN detectors, and rate and intensity noise signals from the rate detector. The rate calculation unit performs a RIN subtraction technique to reduce intensity noise limited ARW.
Abstract:
Systems and methods for reducing rotation sensing errors from laser source signal and modulation cross-talk are provided herein. An RFOG includes a fiber optic resonator; a first laser source that produces a first light wave at a first carrier frequency and a first cross-talked portion at a second carrier frequency wave for propagating in a first direction, wherein a second cross-talked portion propagates in a second direction that is opposite to the first direction; a second laser source that produces a second light wave for propagating in the second direction at a second carrier frequency, and having a third cross-talked portion that propagates in the first direction, a first modulator that modulates the first light wave by suppressing light at the first carrier frequency and the second cross-talked portion at the second carrier frequency, and photodetectors that generate signals from the modulated first light wave and the second light wave.
Abstract:
Systems and methods for ring laser gyroscopes (RLGs) are provided. An RLG includes a traveling-wave resonator cavity with three or more mirrors and a gain medium positioned in the traveling-wave resonator cavity between two of the three or more mirrors. The gain medium is a solid-state gain medium or a nonlinear optical medium. The RLG further includes a first pump laser and a second pump laser to pump the gain medium in different directions and generate first and second lasing signals that traverse the traveling-wave resonator cavity in a opposite directions. The RLG further includes first and second photodetectors to measure levels of the first and second lasing signals. The RLG further includes at least one processor configured to adjust a power level of the first pump laser and/or a power level of the second pump laser based on the measured power levels of the first and second lasing signals.
Abstract:
An acousto-optic waveguide device comprises a substrate comprising a first material having a first refractive index and a first acoustic velocity; a cladding layer over the substrate, the cladding layer comprising a second material having a second refractive index that is distinct from the first refractive index, the second material having a second acoustic velocity that is distinct from the first acoustic velocity; and an optical core surrounded by the cladding layer, the optical core comprising a third material having a third refractive index that is higher that the first refractive index and the second refractive index, the third material having a third acoustic velocity that is distinct from the first acoustic velocity and the second acoustic velocity. The cladding layer that surrounds the optical core has a thickness configured to substantially confine acoustic waves to the cladding layer when an optical signal propagates through the optical core.
Abstract:
One embodiment is directed towards a resonator fiber optic gyroscope (RFOG) including a resonator, one or more light sources coupled to the resonator, and resonance tracking electronics coupled to the resonator. The one or more light sources are configured to produce at least two light beams for input into the fiber coil, the at least two light beams including a first light beam at a first frequency and a second light beam at a second frequency, the first and second frequencies locked to nearby resonance modes of the resonator. The resonance tracking electronics are configured to process output light from the resonator and generate a signal therefrom, the signal indicative of a rotation rate of the resonator. The fiber coil has approximately zero total accumulated chromatic dispersion at the first frequency and the second frequency of the first light beam and the second light beam.
Abstract:
A waveguide device comprises a substrate having an upper surface and a first width; a cladding layer over the upper surface of the substrate, the cladding layer comprising a first material having a first refractive index, wherein the cladding layer has a second width that is less than the first width; and an optical core surrounded by the cladding layer, the optical core comprising a second material having a second refractive index that is higher that the first refractive index such that an optical signal will propagate through the optical core. The cladding layer that surrounds the optical core has a thickness configured to substantially confine acoustic waves to the cladding layer when the optical signal propagates through the optical core.
Abstract:
A fiber light source comprises a laser pump configured to generate a pump laser beam at a predetermined wavelength; a first segment of rare earth doped fiber; a second segment of rare earth doped fiber; and an optical coupler coupled to a first end of the first segment and a first end of the second segment. The optical coupler is configured to split the pump laser beam based on a power coupling ratio. The first segment generates a first stimulated emission having a first mean wavelength sensitivity to pump laser power fluctuations and the second segment generates a second stimulated emission having a second mean wavelength sensitivity to pump laser power fluctuations such that a combined stimulated emission is approximately insensitive to pump laser power fluctuations.