摘要:
Transmission schemes that can flexibly achieve the desired spatial multiplexing order, spatial diversity order, and channel estimation overhead order are described. For data transmission, the assigned subcarriers and spatial multiplexing order (M) for a receiver are determined, where M≧1. For each assigned subcarrier, M virtual antennas are selected from among V virtual antennas formed with V columns of an orthonormal matrix, where V≧M. V may be selected to achieve the desired spatial diversity order and channel estimation overhead order. Output symbols are mapped to the M virtual antennas selected for each assigned subcarrier by applying the orthonormal matrix. Pilot symbols are also mapped to the V virtual antennas. The mapped symbols are provided for transmission from T transmit antennas, where T≧V. Transmission symbols are generated for the mapped symbols, e.g., based on OFDM or SC-FDMA. Different cyclic delays may be applied for the T transmit antennas to improve diversity.
摘要:
Techniques to facilitate estimating the frequency response of a wireless channel in an OFDM system are provided. The method and systems allow for combining signal information across multiple communication channels at one or more channel tap delays in order to determine appropriate taps for channel information.
摘要:
Each transmitter is assigned a time-only pilot code, a frequency-only pilot code, or a time-frequency pilot code to use for pilot transmission. The pilot codes may be pseudo-random, orthogonal, and/or cyclic-shift codes. To obtain a channel estimate for a transmitter using a time-frequency pilot code composed of a time-only code and a frequency-only code, a receiver multiplies a set of received symbols for each symbol period with a set of code values for the frequency-only code to obtain a set of detected symbols and performs an IDFT on the set of detected symbols to obtain an initial impulse response estimate. The receiver performs code matching on multiple initial impulse response estimates derived for multiple symbol periods with the time-only code to obtain a final impulse response estimate for the desired transmitter. The receiver retains the first L channel taps and zeroes out remaining channel taps, where L is the expected channel length.
摘要:
Each transmitter is assigned a time-only pilot code, a frequency-only pilot code, or a time-frequency pilot code to use for pilot transmission. The pilot codes may be pseudo-random, orthogonal, and/or cyclic-shift codes. To obtain a channel estimate for a transmitter using a time-frequency pilot code composed of a time-only code and a frequency-only code, a receiver multiplies a set of received symbols for each symbol period with a set of code values for the frequency-only code to obtain a set of detected symbols and performs an IDFT on the set of detected symbols to obtain an initial impulse response estimate. The receiver performs code matching on multiple initial impulse response estimates derived for multiple symbol periods with the time-only code to obtain a final impulse response estimate for the desired transmitter. The receiver retains the first L channel taps and zeroes out remaining channel taps, where L is the expected channel length.
摘要:
Efficient pilot transmission schemes for multi-antenna communication systems are described. In general, MISO receivers prefer a pilot transmitted in one spatial direction, and MIMO receivers typically require a pilot transmitted in different spatial directions. In one pilot transmission scheme, a first set of T scaled pilot symbols is generated with a first training vector and transmitted (e.g., continuously) from T transmit antennas, where T>1. If MIMO receiver(s) are to be supported by the system, then at least T−1 additional sets of T scaled pilot symbols are generated with at least T−1 additional training vectors and transmitted from the T transmit antennas. The training vectors are for different (e.g., orthogonal) spatial directions. Each MISO receiver can estimate its MISO channel based on the first set of scaled pilot symbols. Each MIMO receiver can estimate its MIMO channel based on the first and additional sets of scaled pilot symbols.
摘要:
Accordingly, a method and apparatus are provided wherein a receiver system selects a pre-coding matrix, comprising eigen-beamforming weights, to use and provides rank value and matrix index associated with the selected matrix to the transmitter system. The transmitter system upon receiving the rank value and matrix index, determine if the matrix associated with the matrix index provided by the receiver system can be used. If not, them transmitter system selects another matrix for determining eigen-beamforming weights.
摘要:
Systems and methodologies are described that facilitate improved pilot information to MIMO user devices without increasing interference of SISO user devices in a wireless communication environment. A data communication signal can be generated and transmitted at a first power level, and a continuous pilot waveform comprising pilot information related to the data signal can be generated and sent at a second power level below the first transmission power level. Alternatively, a discontinuous pilot waveform can be generated so that it does not overlap with pilot segments in the first waveform, and can be transmitted at the first power level without interfering with the first waveform as received by a SISO user device. A MIMO user device can receive both waveforms, and can employ the pilot waveform to better estimate a MIMO channel for the first waveform.
摘要:
A transmitter generates multiple composite pilots with a training matrix and a gain matrix. Each composite pilot includes multiple training pilots generated with multiple columns of the training matrix and scaled with multiple gain elements in a column of the gain matrix. The transmitter transmits each composite pilot via multiple transmit antennas. A MISO receiver obtains received symbols for the multiple composite pilots and derives an estimate of a composite MISO channel. For OFDM, the MISO receiver derives an initial impulse response estimate for each composite pilot, filters the initial impulse response estimates for all composite pilots, and derives a frequency response estimate for the composite MISO channel. A MIMO receiver obtains and processes received symbols for the multiple composite pilots based on the training and gain matrices and derives channel estimates for individual SISO channels between the multiple transmit antennas and multiple receive antennas.
摘要:
Aspects describe controlling a power level for an access terminal in a wireless communication system that utilizes multiple modulation waveforms. The power can be controlled after an Access Grant is received in response to an Access Probe until the mobile device transitions into a steady state. A reference power can be continuously monitored and a setting of a power amplifier can be modified only when the reference power changes. A digital gain of a reverse data channel can be adjusted relative to the reference power level.
摘要:
A method for detecting and reducing aliasing is described. The method may be implemented by a first wireless device. A first signal may be transmitted on a first frequency channel. A second signal may be received on a second frequency channel. The second signal may be received concurrently with the transmission of the first signal. Aliasing of the first signal on the second signal may be detected. Aliasing may be reduced.