摘要:
Compositions and methods are disclosed for inhibiting the release of a proinflammatory cytokine from a vertebrate cell, and for inhibiting an inflammatory cytokine cascade in a patient. The compositions comprise, for example, high affinity antibodies that specifically bind HMG1 and antigenic fragments thereof. The high affinity antibodies of the present invention and pharmaceutical compositions comprising the same are useful for many purposes, for example, as therapeutics against a wide range of inflammatory diseases and disorders such as sepsis, rheumatoid arthritis, peritonitis, Crohn's disease, reperfusion injury, septicemia, endotoxic shock, cystic fibrosis, endocarditis, psoriasis, psoriatic arthritis, arthritis, anaphylactic shock, organ ischemia, reperfusion injury, and allograft rejection. In addition, the high affinity antibodies of the present inventions are useful as diagnostic antibodies.
摘要:
The present invention relates to the discovery of antibodies that bind to novel epitopes present on membrane-anchored immunoglobulins and which bind to these novel epitopes on the surface of B cells and plasma cells. In addition, the antibodies of the present invention can mediate ADCC and can be useful to deplete those B cells and plasma cells expressing the novel epitopes of the invention. The antibodies of the present invention can be useful for the treatment of B cell-mediated diseases and diseases caused by monoclonal expansion of B cells. Accordingly the present invention also provides compositions and methods for the prevention, management, treatment or amelioration of B cell-mediated diseases and diseases caused by monoclonal expansion of B cells.
摘要:
The invention provides enhanced LM609 grafted antibodies exhibiting selective binding affinity to αvβ3, or a functional fragment thereof. The invention also provides nucleic acid molecules encoding the enhanced LM609 grafted antibodies. Additionally provided are methods of inhibiting a function of αvβ3 by contacting αvβ3 with an enhanced LM609 grafted antibody.
摘要:
The present invention encompasses novel antibodies and fragments thereof which immunospecifically bind to one or more RSV antigens and compositions comprising said antibodies and antibody fragments. The present invention encompasses methods preventing respiratory syncytial virus (RSV) infection in a human, comprising administering to said human a prophylactically effective amount of one or more antibodies or fragments thereof that immunospecifically bind to one or more RSV antigens, wherein a certain serum titer of said antibodies or antibody fragments is achieved in said human subject. The present invention also encompasses methods for treating or ameliorating symptoms associated with a RSV infection in a human, comprising administering to said human a therapeutically effective amount of one or more antibodies or fragments thereof that immunospecifically bind to one or more RSV antigens, wherein a certain serum titer of said antibodies or antibody fragments is achieved in said human subject. The present invention further encompasses compositions comprising antibodies or fragments thereof that immunospecifically bind to a RSV antigen, and methods using said compositions for detection or diagnosis of a RSV infection.
摘要:
The present invention provides methods for preventing, managing, treating and/or ameliorating a Respiratory Syncytial Virus (RSV) infection (e.g., acute RSV disease, or a RSV upper respiratory tract infection (URI) and/or lower respiratory tract infection (LRI)), otitis media (preferably, stemming from, caused by or associated with a RSV infection, such as a RSV URI and/or LRI), and/or a symptom or respiratory condition relating thereto (e.g., asthma, wheezing, and/or reactive airway disease (RAD)) in a subject, comprising administering to said human an effective amount of one or more antibodies that immunospecifically bind to one or more RSV antigens with a high affinity and/or high avidity. In some embodiments, one or more antibodies comprise a modified IgG constant domain, or FcRn-binding fragment thereof resulting in longer in vivo serum half-life. In particular embodiments the methods of the invention comprising administering to subject an effective amount of one or more modified antibodies that immunospecifically bind to one or more RSV antigens with an association rate (kon) of at least 2×105 M−1s−1 and a dissociation rate (koff) of less than 5×10−4 s−1.
摘要:
The present invention encompasses novel antibodies and fragments thereof which immunospecifically bind to one or more RSV antigens and compositions comprising said antibodies and antibody fragments. The present invention encompasses methods preventing respiratory syncytial virus (RSV) infection in a human, comprising administering to said human a prophylactically effective amount of one or more antibodies or fragments thereof that immunospecifically bind to one or more RSV antigens, wherein a certain serum titer of said antibodies or antibody fragments is achieved in said human subject. The present invention also encompasses methods for treating or ameliorating symptoms associated with a RSV infection in a human, comprising administering to said human a therapeutically effective amount of one or more antibodies or fragments thereof that immunospecifically bind to one or more RSV antigens, wherein a certain serum titer of said antibodies or antibody fragments is achieved in said human subject. The present invention further encompasses compositions comprising antibodies or fragments thereof that immunospecifically bind to a RSV antigen, and methods using said compositions for detection or diagnosis a RSV infection
摘要:
The invention provides a method of conferring donor CDR binding affinity onto an antibody acceptor variable region framework. The method consists of: (a) constructing a population of altered antibody variable region encoding nucleic acids, said population comprising encoding nucleic acids for an acceptor variable region framework containing a plurality of different amino acids at one or more acceptor framework region amino acid positions and donor CDRs containing a plurality of different amino acids at one or more donor CDR amino acid positions; (b) expressing said population of altered variable region encoding nucleic acids, and (c) identifying one or more altered variable regions having binding affinity substantially the same or greater than the donor CDR variable region. The acceptor variable region framework can be a heavy or light chain variable region framework and the populations of heavy and light chain altered variable regions can be expressed alone to identify heavy or light chains having binding affinity substantially the same or greater than the donor CDR variable region. The populations of heavy and light chains additionally can be coexpressed to identify heteromeric altered variable region binding fragments. The invention also provides a method of simultaneously grafting and optimizing the binding affinity of a variable region binding fragment. The method consists of: (a) constructing a population of altered heavy chain variable region encoding nucleic acids comprising an acceptor variable region framework containing donor CDRs and a plurality of different amino acids at one or more framework region and CDR amino acid positions; (b) constructing a population of altered light chain variable region encoding nucleic acids comprising an acceptor variable region framework containing donor CDRs and a plurality of different amino acids at one or more framework regions and CDR amino acid positions; (c) coexpressing said populations of heavy and light chain variable region encoding nucleic acids to produce diverse combinations of heteromeric variable region binding fragments, and (d) identifying one or more heteromeric variable region binding fragments having affinity substantially the same or greater than the donor CDR heteromeric variable region binding fragment. A method of optimizing the binding affinity of an antibody variable region is also provided. The method consists of: (a) constructing a population of antibody variable region encoding nucleic acids, said population comprising two or more CDRs containing a plurality of different amino acids at one or more CDR amino acid positions; (b) expressing said population of variable region encoding nucleic acids, and (c) identifying one or more variable regions having binding affinity substantially the same or greater than the donor CDR variable region. The variable region populations can be heavy or light chains and can be expressed as individual populations or they can be coexpressed to produce heteromeric variable region binding fragments.
摘要:
The present invention relates to methods of reengineering or reshaping antibodies to reduce the immunogenicity of the antibodies, while maintaining the immunospecificity of the antibodies for an antigen. In particular, the present invention provides methods of producing antibodies immunospecific for an antigen by synthesizing a combinatorial library comprising complementarity determining regions (CDRs) from a donor antibody fused in frame to framework regions from a sub-bank of framework regions. The present invention also provides antibodies produced by the methods of the invention.
摘要:
The present invention relates to the discovery of antibodies that bind to novel epitopes present on membrane-anchored immunoglobulins and which bind to these novel epitopes on the surface of B cells and plasma cells. In addition, the antibodies of the present invention can mediate ADCC and can be useful to deplete those B cells and plasma cells expressing the novel epitopes of the invention. The antibodies of the present invention can be useful for the treatment of B cell-mediated diseases and diseases caused by monoclonal expansion of B cells. Accordingly the present invention also provides compositions and methods for the prevention, management, treatment or amelioration of B cell-mediated diseases and diseases caused by monoclonal expansion of B cells.
摘要:
Compositions and methods are disclosed for inhibiting the release of a proinflammatory cytokine from a vertebrate cell, and for inhibiting an inflammatory cytokine cascade in a patient. The compositions comprise, for example, high affinity antibodies that specifically bind HMG1 and antigenic fragments thereof. The high affinity antibodies of the present invention and pharmaceutical compositions comprising the same are useful for many purposes, for example, as therapeutics against a wide range of inflammatory diseases and disorders such as sepsis, rheumatoid arthritis, peritonitis, Crohn's disease, reperfusion injury, septicemia, endotoxic shock, cystic fibrosis, endocarditis, psoriasis, psoriatic arthritis, arthritis, anaphylactic shock, organ ischemia, reperfusion injury, and allograft rejection. In addition, the high affinity antibodies of the present inventions are useful as diagnostic antibodies.