摘要:
A vertically aligned liquid crystal display is disclosed. The liquid crystal display, which has a first substrate and a second substrate, uses pixels having a pixel electrode on the first substrate, a common electrode under the second substrate, liquid crystals between the pixel electrode and the common electrode, a switching element coupled to the pixel electrode, a control electrode above the first substrate on a first side of the pixel electrode. When the pixel is in an ON state, the control electrode is at an active control voltage, which is greater than the output voltage of the first switching element. The difference in voltage in the control electrode and the pixel electrode amplifies an intrinsic fringe field around the pixel electrode. The amplified intrinsic fringe field interacts with the pixel electrode electric field and causes the liquid crystals to tilt in the same direction.
摘要:
Displays having narrow viewing angles that can be fabricated using fabrication facilities geared toward wide angle displays are described. In one display, a narrow viewing angle optical film is placed between the LCD panel and the polarizers. The narrow viewing angel optical films have a vertically orientated optical axis and a positive birefringence.
摘要:
A multi-domain vertical alignment liquid crystal display that does not require physical features on the substrate (such as protrusions and ITO slits) is disclosed. Each pixel of the MVA LCD is subdivided into color components, which are further divided into color dots. Each pixel also contains extra-planar fringe field amplifiers that separate the color dots of a pixel. The voltage polarity of the color dots and extra-planar fringe field amplifiers are arranged so that fringe fields in each color dot causes multiple liquid crystal domains in each color dot. Specifically, the color dots and fringe field amplifying regions of the display are arranged so that neighboring polarized elements have opposite polarities.
摘要:
A multi-domain liquid crystal display is disclosed. The display includes embedded fringe field amplifiers behind the color dots of the display. Specifically, the embedded fringe field amplifiers have a polarity that is different from the polarity of the color dot, that is located in front of the embedded fringe field amplifier. This difference in polarity enhances the fringe fields of the color dot or in some situations may create additional fringe fields. The enhanced fringe fields or additional fringe fiends enhances the performance of the display.
摘要:
A multi-domain liquid crystal display is disclosed. The display includes embedded polarity regions within the color dots of the display. Specifically, the embedded polarity regions have a polarity that is different from the polarity of the color dot containing the embedded polarity region. This difference in polarity enhances the fringe fields of the color dot or in some situations may create additional fringe fields. The enhanced fringe fields or additional fringe fiends can more quickly restore liquid crystals to their proper position.
摘要:
A multi-domain vertical alignment liquid crystal display that does not require physical features on the substrate (such as protrusions and ITO slits) is disclosed. Each pixel of the MVA LCD is subdivided into color components, which are further divided into color dots. Each pixel also contains extra-planar fringe field amplifiers that separate the color dots of a pixel. The voltage polarity of the color dots and extra-planar fringe field amplifiers are arranged so that fringe fields in each color dot causes multiple liquid crystal domains in each color dot. Specifically, the color dots and fringe field amplifying regions of the display are arranged so that neighboring polarized elements have opposite polarities.
摘要:
A multi-domain vertical alignment liquid crystal display that does not require physical features on the substrate (such as protrusions and ITO slits) is disclosed. Each pixel of the MVA LCD is subdivided into color components, which are further divided into color dots. The drive component areas, i.e. where switching elements and storage capacitors are located, are converted to associated dots by adding an electrode that can be electrically biased. The voltage polarity of the color dots and associated dots are arranged so that fringe fields in each color dot causes multiple liquid crystal domains in each color dot. Specifically, the color dots and associated dots of a pixel are arranged so that associated dots have opposite polarity as compared to neighboring color dots.
摘要:
A method to form alignment layers on a substrate of an LCD is disclosed. The substrate is placed in a vacuum chamber and undergoes a purging process. The purging process heats the substrates and removes water vapor from the vacuum chamber. Specifically, the vacuum chamber is evacuated to a low pressure and refilled with a preheated inert gas. Evacuation of the vacuum chamber and refilling of the vacuum chamber is repeated several times. The alignment layer is then deposited using vapor deposition. Alternatively, plasma enhanced vapor deposition can be used for depositing the alignment layer. Furthermore, plasma cleaning prior to the deposition of the alignment layer can used clean the substrate.
摘要:
A multi-domain vertical alignment liquid crystal display that does not require physical features on the substrate (such as protrusions and ITO slits) is disclosed. Each pixel of the MVA LCD is subdivided into color components, which are further divided into color dots. Each pixel also contains fringe field amplifying regions that separate the color dots of a pixel. The voltage polarity of the color dots and fringe field amplifying regions are arranged so that fringe fields in each color dot causes multiple liquid crystal domains in each color dot. Specifically, the color dots and fringe field amplifying regions of the display are arranged so that neighboring polarized elements have opposite polarities.
摘要:
A multi-domain vertical alignment liquid crystal display that does not require physical features on the substrate (such as protrusions and ITO slits) is disclosed. Each pixel of the MVA LCD is subdivided into color components, which are further divided into color dots. The color components include polarized extension regions that extend between color dots of neighboring color components (and neighboring pixels). The voltage polarity of the color dots and polarized extension regions are arranged so that fringe fields in each color dot causes multiple liquid crystal domains in each color dot. Specifically, the color dots and polarity extension regions of the display are arranged so that neighboring polarized elements have opposite polarities.