摘要:
Crystallization of a fluoride glass article is suppressed by treating the surface(s) of the fluoride glass article with a solution of a fluorine-containing alkali metal compound or a fluorine-containing ammonium compound such as, e.g., LiPF.sub.6, NaBF.sub.4 or NH.sub.4 BF.sub.4, in a nonaqueous solvent such as, e.g., ethanol, N,N-dimethylformamide or acetonitrile. The treatment can be made at room temperature.
摘要:
A graphite fluoride can be produced safely and in high yield on a commercial production scale by a process comprising reacting a carbon material having an average size of 100.mu. to 10 mm with fluorine. Further, when the fluorination reaction is stopped before completion thereof and the graphite fluoride product is subjected to sifting with a sieve to separate a desired graphite fluoride from the raw carbon material remaining unreacted.
摘要:
A method of preparing graphite fluoride such as (CF).sub.n or (C.sub.2 F).sub.n by heterogeneous contact reaction between a carbon material such as graphite or petroleum coke and fluorine gas at about 200.degree.-550.degree. C. In the gas phase of the reaction system, the total concentration of higher fluorocarbons having more than four carbon atoms formed by side reactions is controlled so as not to become above 3% by volume by, for example, condensation or catalytic decomposition of at least a portion of the higher fluorocarbons in the gas flowed out of the reaction chamber for recirculation. Such control is highly effective for prevention of rapid and violent decomposition of the graphite fluoride existing in the solid phase of the reaction system induced by sudden decomposition of the higher fluorocarbons in the reaction system to lower fluorocarbons.
摘要:
A novel chemical compound poly-dicarbon monofluoride represented by the formula (C.sub.2 F).sub.n and having a crystalline structure of packing form featured by its layer structure as shown in FIG. 12 hereof stacked with an interlayer spacing of about 9.0 A. Such new compound can be produced under relatively mild reaction conditions and obtained in a yield as large as 100% with respect to not only the carbon material employed but also the fluorine employed. The new compound is black under the formation conditions and of low crystallinity, but it can be easily converted to that of high crystallinity and white color by heat treatment in a fluorine atmosphere. The new compound has a wide variety of uses, for example, as lubricants, stain-resistant and water-repellent materials, cathode materials in high energy primary cells, etc.
摘要:
A vehicle cornering light can improve the visibility in a diagonally front area of the vehicle without increasing the luminous intensity of the cornering light (or light source thereof). The cornering light that is provided at or near a front corner of a vehicle and is configured to emit light for illuminating a diagonally front area of the vehicle can include a light source that can emit light with a color temperature of from 3700K to 7000K. The cornering light can emit light for illuminating a lateral area ranging from 60° to 75° with respect to the longitudinal direction of the vehicle. The light source can be composed of a first light source configured to emit light for illuminating an area partly overlapping, or adjacent to, an illumination area of the headlight of the vehicle, and a second light source configured to emit light for illuminating an area partly overlapping, or adjacent to, the illumination area of the first light source. The color temperatures of the headlight, the first light source, and the second light source are sequentially changed to be higher in this respective order.
摘要:
A vehicle light can include a light emitting diode (LED) serving as a light source and an optical system for controlling a light distribution pattern of the light beams from the LED light source utilizing a light guide (such as a lens body having an inner reflecting surface). The vehicle light can project illumination light with a low beam light distribution pattern. The vehicle light can include an LED light source and a lens body serving as a light guide. The lens body can include a light incident surface, a reflecting surface, and a light exiting surface. The LED light source can have a rearmost end light emitting point from which light beams are emitted to form a bright-dark boundary line. Among the light beams, perpendicularly incident light beams not subjected to refraction can be projected toward the bright-dark boundary line while obliquely incident light beams that are subjected to refraction can be corrected to be directed in a lower angular direction than the bright-dark boundary line and to be mixed with the other light beams, thereby preventing color shading of illumination light from the vehicle light.
摘要:
A vehicle light can include an optical system for controlling a light distribution pattern, and the optical system is a light guide (being a lens body having an inner reflecting surface). The vehicle light can project illumination light with a low bean light distribution pattern. The vehicle light can include an LED light source and a lens body serving as a light guide. The lens body can include a light incident surface, a reflecting surface, and a light exiting surface. The LED light source can have a rearmost end light emitting point from which light beams are emitted to form a bright-dark boundary line. Among the light beams, perpendicularly incident light beams not subjected to refraction can be projected toward the bright-dark boundary line while obliquely incident light beams being subjected to refraction can be corrected to be directed in a lower angular direction than the bright-dark boundary line to be mixed with the other light beams emitted from other light emitting points of the LED light source, thereby preventing the color shading of illumination light.
摘要:
An upconversion laser material includes a micro-sphere which is doped with an ion of a rare earth element and made of one selected from the group consisting of crystals and glasses. Thus, the micro-sphere achieves the light confinement therein and serves as a resonator. Therefore, the Q-value of the resonator becomes large. With this, it is possible to obtain the upconversion laser oscillation at room temperature.
摘要:
Metal containing compounds having a graphite-like layer structure are derived from poly(amino-s-triazine), [A], which has a layer structure and is represented by (C.sub.3 N.sub.3).sub.2 N.sub.x H.sub.y, where 2.ltoreq.x.ltoreq.4, and 0.ltoreq.y.ltoreq.8. Reaction of [A] with a transition metal M at 400.degree.-1000.degree. C. gives a compound represented by C.sub.a NH.sub.b M.sub.c, where 0.6.ltoreq.a.ltoreq.20.0, 0.ltoreq.b.ltoreq.1.0, and 0.001.ltoreq.c.ltoreq.0.5. This compound exhibits magnetism. Reaction of [A] with a halide of a transition metal or aluminum at 200.degree.-500.degree. C. gives C.sub.6 N.sub.p H.sub.q M.sub.r X.sub.s, where M is a transition metal or Al, X is a halogen, 8.ltoreq.p.ltoreq.10, 0.ltoreq.q.ltoreq.10, 0.6.ltoreq.r.ltoreq.1.5, and 0.ltoreq.s.ltoreq.1. When M is a transition metal the compound exhibits paramagnetism. When X is Al, heating of a powder of the compound at 800.degree.-950.degree. C. provides an AlN powder coated with an amorphous organic substance composed of C, N and H and, hence, protected against oxidation. The same coated AlN powder is obtained also by reacting a powder of [A] with an aluminum halide at 800.degree.-950.degree. C. By heating the coated AlN powder at a temperature above 1000.degree. C. the amophous organic coating sublimates and decomposes to leave a pure AlN powder which is suitable for sintering.
摘要:
The invention provides a lithium secondary battery using hydric boron carbonitride which is a layered compound represented by BC.sub.x N.sub.y H.sub.z, where 0.5.ltoreq.x.ltoreq.12, 0.7.ltoreq.y.ltoreq.1.5, and 0.01.ltoreq.z.ltoreq.3, as the active material of the negative electrode. This compound is obtained by a CVD process. The electrolyte is a solution of a lithium salt in an organic solvent. The material of the positive electrode is an oxide such as MnO.sub.2 or V.sub.2 O.sub.5, a sulfide such as MoS.sub.2 or TiS.sub.2 or a conductive organic polymer such as polyaniline. In this secondary battery Li is smoothly intercalated in and released from the hydric boron carbonitride of the negative electrode, and the energy density with respect to the active material of the negative electrode is sufficiently high. This battery bears a fairly large number of charge-discharge cycles. Also it is possible to use hydric boron carbonitride as the active material of the positive electrode of a lithium secondary battery in combination with negative electrode of metallic Li or hydric boron carbonitride with intercalation of a larger amount of Li.