Abstract:
A two-component developing method, including regulating a two-component developer borne on a developer bearer with a doctor blade; and transferring the regulated two-component developer to the developer bearer to develop a latent image on an image bearer, wherein the two-component developer includes a pulverized toner having a volume-average particle diameter of from 3.0 to 6.0 μm, including particles having a particle diameter not greater than 4.0 μm in an amount not less than 30% by number, and including particles having a particle diameter not greater than 2.0 μm in an amount not greater than 10% by number, and wherein the doctor blade has a surface regulating the developer at an upstream side relative to a rotational direction of the developer bearer, which has a surface roughness Ra not greater than 0.2 μm.
Abstract:
Pairing is carried out with no user operation for a communication apparatus. A client device (4) of the present invention including: a notification signal detecting section (70) for detecting receipt of a notification signal for informing a user of a communication network or an apparatus each connectable via a router; and a client side pairing performing section (72) for carrying out pairing with respect to the router upon detection, by the notification signal detecting section (70), of receipt of the notification signal. The user can consequently carry out pairing between the client device (4) and the router without carrying out any input operation for the client device (4).
Abstract:
A toner, wherein a binder resin contains a polyester resin (A) produced by polycondensing an alcohol component with a carboxylic acid component which contains a rosin compound in an amount of 5% by mass or more of the total amount by mass of the alcohol component and the carboxylic acid component, and a polyester resin (B) produced by polycondensing an alcohol component containing an alkylene oxide adduct of bisphenol A represented by General Formula (1) given below with a carboxylic acid component, and wherein the toner contains abietic acid in an amount of 0.01% by mass to 1% by mass: where R1 and R2 each represent C2-C4 alkylene; R3 and R4 are each any one of a hydrogen atom, C1-C6 straight-chain alkyl, and C1-C6 branched-chain alkyl; and x and y each represent a positive integer and the sum of x and y is 1 to 16.
Abstract:
A rotary pump including: a casing having a circular inner circumferential surface, a rotor rotating about a center of the inner circumferential surface of the casing, a partition plate installed so as to be movable in and out of the casing so that a tip end of the partition plate comes into contact with an outer circumferential surface of the rotor, a spring which drives the partition plate so that the partition plate is in constant contact with the rotor, and an intake port and a discharge port formed in the casing so as to be positioned after and before the partition plate with respect to the direction of rotation of the rotor; and the partition plate is formed with a communicating portion that communicates between the intake port side and the discharge port side.
Abstract:
A carrier for developing an electrostatic latent image is provided. The carrier comprises a core particle having an internal void ratio of from 0.0% to 2.0% and a coating layer coating the core particle. The coating layer contains flat chargeable particles satisfying Formula 1 blow: 1.0≤R1/R2≤3.0 Formula 1 where R1 [nm] and R2 [nm] represent a major axis and a thickness, respectively, of each of the flat chargeable particles. The carrier has an apparent density of from 2.0 to 2.5 g/cm3.
Abstract:
A carrier is provided that includes a core particle and a coating layer coating the core particle. The coating layer includes a resin and chargeable inorganic fine particles, and has voids. The resin has an average film thickness of 0.10 μm or larger and smaller than 0.45 μm. The coating layer has a porosity of 0.1% or higher and lower than 2.8%, when the porosity expressed by the following equation:
Porosity [%]=S1/S2×100
where, on a cross section of the coating layer, S1 represents a cross sectional area of the voids and S2 represents a cross sectional area of the resin.
Abstract:
A carrier for forming an electrophotographic image is provided. The carrier comprises a core particle and a coating layer coating the core particle. The coating layer contains a conductive component comprising an element A, and a coating resin comprising an element B. The element A is undetected in the coating resin by an energy dispersive X-ray spectrometer, and the element B is undetected in the conductive component by the energy dispersive X-ray spectrometer. A standard deviation of a value A/B is 0.4 or less, where the value A/B is a ratio of the element A to the element B in intensity measured by the energy dispersive X-ray spectrometer.
Abstract:
A carrier can be used for forming an electrophotographic image. The carrier contains a core particle and a coating layer coating the core particle. The coating layer contains a chargeable particle. The carder has an internal void ratio of 0.0% or greater but less than 2.0%, and an apparent density of 2.0 g/cm3 or greater but less than 2.5 g/cm3.
Abstract:
A carrier for developing electrostatic latent images is provided. The carrier includes a magnetic core particle and a resin layer coating a surface of the magnetic core particle. The resin layer includes a particulate material A having a volume average particle diameter (a) and a particulate material B having a volume average particle diameter (b). The volume average particle diameter (a) of the particulate material A is the largest among volume average particle diameters of all particulate materials included in the resin layer, and an inequation 100≥(a)/(b)≥5 is satisfied. The particulate material A is barium sulfate.
Abstract:
There is provided a carrier including magnetic core particles; and a coating layer on a surface of each of the magnetic core particles, wherein the coating layer contains electroconductive particles; wherein the electroconductive particles are electroconductive particles in which white inorganic pigments are coated with phosphorus-doped tin or tungsten-doped tin; and wherein a dope ratio of phosphorus or tungsten to tin in the phosphorus-doped tin or tungsten-doped tin is 0.010 to 0.100.