Abstract:
An antenna system, a feeding network reconfiguration method, and an apparatus is disclosed. The antenna system may include an antenna array, a reconfigurable network unit, a control unit, and K radio frequency channels. The antenna array may include L antenna subarrays, and the reconfigurable network unit may divide the L antenna subarrays into M antenna subarray groups, and separately connect the M antenna subarray groups to the K radio frequency channels; any one of the K radio frequency channels may perform signal processing on a signal received by a connected antenna subarray group and/or a to-be-transmitted signal; and the control unit may control the reconfigurable network unit to adjust a mapping relationship between an antenna subarray group connected to each radio frequency channel and the antenna subarrays.
Abstract:
A feeding device is disclosed. The feeding device includes a body and at least one first port, the body includes at least one first contour port, and each of the at least one first contour port corresponds to one of the at least one first port; and the first contour port includes at least two sub-ports, and the at least two sub-ports of the first contour port are connected, by using at least one power splitter, to the first port corresponding to the first contour port. In the foregoing implementation solution, the first contour port is divided into several sub-ports, and the first port and the several sub-ports are connected by using the at least one power splitter.
Abstract:
An antenna system is disclosed. The system includes: N radio frequency channels, configured to send a radio frequency signal to drive one or two columns of M columns of antennas, and N
Abstract:
Embodiments of the present invention provide a method for communication through a distributed antenna array system and an array system. The antenna array system includes a number of antenna units, a baseband resource pool, a radio frequency resource pool, and a controller. The controller is configured to monitor a signal state of a user equipment under a coverage area of a macrocell, to determine an antenna unit that provides a service to the user equipment, and, according to a capability of the user equipment, determine whether to perform coordinated transmission of a plurality of antennas and a corresponding transmission mode for the user equipment, and then to configure an antenna resource for the user equipment, so that the baseband resource pool and the radio frequency resource pool control the configured antenna resource to provide a communication service for the user equipment.
Abstract:
An antenna and an active antenna system to reduce complexity and power consumption of an antenna device, and reduce production costs, where the antenna includes an antenna array, a multichannel front-end, a multi-beam receiving network, and a multi-beam transmitting network. The antenna array includes w antenna elements, the multi-beam transmitting network is configured to perform beamforming processing on j transmit signal beams to obtain m transmit signals, the multichannel front-end is configured to convert w first radio-frequency signals received by the w antenna elements into n received signals, and convert the m transmit signals obtained by the multi-beam transmitting network into w second radio-frequency signals, where both n and m are less than or equal to w, and the multi-beam receiving network is configured to perform beamforming processing on the n received signals generated by the multichannel front-end to obtain k received signal beams.
Abstract:
An electromagnetic dipole antenna designed in the present invention includes an antenna radiating unit and a metal ground, where the antenna radiating unit mainly includes vertical electric dipole and horizontal magnetic dipole, where the vertical electric dipole and the horizontal magnetic dipole jointly form an electromagnetic coupling structure. The antenna has advantages of small size, low profile, and the like.
Abstract:
The present invention discloses an antenna system, where the antenna system includes an antenna module, configured to: receive and/or transmit at least one first radio frequency signal, and at least one second radio frequency signal; a power-split phase-shift network module, configured to control an amplitude and a phase of each radio frequency signal in the antenna module, where control parameters for controlling an amplitude and a phase of each first radio frequency signal are configured according to a beam pointing direction and a beam width that are required by a three-dimensional building region, and control parameters for controlling an amplitude and a phase of each second radio frequency signal are configured according to a beam pointing direction and a beam width that are required by a ground region. Therefore, a problem of high costs and difficulty in obtaining an antenna site and maintaining an antenna is resolved.
Abstract:
The present invention discloses a multi-beam antenna system, comprising: a one-dimensional multi-beam forming module connected to a radio frequency port, configured to convert a radio frequency signal transmitted by the radio frequency port into M radio frequency signals having different phases; a two-dimensional multi-beam forming module, which includes M first power division units, and a phase shifter is disposed on P output tributaries of each first power division unit; and M×N radiating elements, where the M×N radiating elements form a matrix having N rows and M columns, M columns of radiating elements are respectively connected to the M first power division units, N radiating elements in each column of radiating elements are respectively connected to N output tributaries of one first power division unit, and M×P radiating elements connected to output tributaries disposed with a phase shifter form a matrix having P rows and M columns.
Abstract:
Embodiments of the present invention provide a method for communication through a distributed antenna array system and an array system. The antenna array system includes a number of antenna units, a baseband resource pool, a radio frequency resource pool, and a controller. The controller is configured to monitor a signal state of a user equipment under a coverage area of a macrocell, to determine an antenna unit that provides a service to the user equipment, and, according to a capability of the user equipment, determine whether to perform coordinated transmission of a plurality of antennas and a corresponding transmission mode for the user equipment, and then to configure an antenna resource for the user equipment, so that the baseband resource pool and the radio frequency resource pool control the configured antenna resource to provide a communication service for the user equipment.