Abstract:
A virtual image display apparatus configured to be in front of at least one eye of a user includes an image display unit, a first beam splitting unit, and a reflection-refraction unit. The image display unit provides an image beam. The first beam splitting unit disposed on transmission paths of the image beam and an object beam causes at least one portion of the object beam to propagate to the eye and causes at least one portion of the image beam to propagate to the reflection-refraction unit. The reflection-refraction unit includes a lens portion and a reflecting portion on a first curved surface of the lens portion. At least part of the image beam travels through the lens portion, is reflected by the reflecting portion, travels trough the lens portion again, and is propagated to the eye by the first beam splitting unit in sequence.
Abstract:
A virtual image display system adapted for venipuncture applications is provided. The virtual image display system includes at least one infrared light source, at least one image sensing module, and at least one virtual image display module. The at least one infrared light source is configured to emit at least one infrared light to a tissue having a vein. The at least one image sensing module is configured to receive the infrared light from the tissue so as to sense an image of the vein. The at least one virtual image display module is disposed in front of at least one eye of a user. The at least one virtual image display module includes an image display unit configured to show an image of the vein to the at least one eye of the user.
Abstract:
A projection lens, a projection device and an optically-induced microparticle device are provided. The projection lens includes an aperture, a first and a second lens groups. The aperture, the first and the second lens groups are disposed on a projection path of an image. The aperture is between the first and the second lens groups. The first and the second lens groups are suitable for interchanging with each other to switch the magnification ratio. When in a first state, the first lens group is between the object and the aperture and the second lens group is between the aperture and a projection surface, herein the projection lens has a first magnification ratio. When in a second state, the first lens group is between the aperture and the projection surface, and the second lens group is between the object and the aperture, herein the projection lens has a second magnification ratio.
Abstract:
A virtual image display apparatus configured to be in front of at least one eye of a user includes an image display unit, a first beam splitting unit, and a reflection-refraction unit. The image display unit provides an image beam. The first beam splitting unit disposed on transmission paths of the image beam and an object beam causes at least one portion of the object beam to propagate to the eye and causes at least one portion of the image beam to propagate to the reflection-refraction unit. The reflection-refraction unit includes a lens portion and a reflecting portion on a first curved surface of the lens portion. At least part of the image beam travels through the lens portion, is reflected by the reflecting portion, travels trough the lens portion again, and is propagated to the eye by the first beam splitting unit in sequence.
Abstract:
An optically-induced dielectrophoresis device includes a first substrate, a first conductive layer, a first patterned photoconductor layer, a first patterned layer, a second substrate, a second conductive layer, and a spacer. The first conductive layer is disposed on the first substrate. The first patterned photoconductor layer is disposed on the first conductive layer. The first patterned layer is disposed on the first conductive layer. The first patterned photoconductor layer and the first patterned layer are distributed alternately over the first conductive layer. Resistivity of the first patterned photoconductor layer is not equal to resistivity of the first patterned layer. At least one of the first substrate and the second substrate is pervious to a light. The second conductive layer is disposed on the second substrate and between the first substrate and the second substrate. The spacer connects the first substrate and the second substrate.
Abstract:
A convective polymerase chain reaction apparatus and an optical detecting method thereof are provided. The optical detecting method includes the following steps. A substance in a tube to be tested is heated. At least two monochromatic lights are provided and are combined using a light combining element to irradiate the tube to be tested. At least two excited lights generated by exciting the substance in the tube to be tested by the at least two monochromatic lights are sensed.
Abstract:
A medication concentration detecting device includes a medicine container, a three-way pipe, a light emitting member, a first light receiver and a processor. The medicine container has a chamber configured for accommodating nebulized medicine. The three-way pipe has a passageway connected to the chamber for the nebulized medicine to flow along the passageway. The light emitting member is disposed on the three-way pipe and configured for emitting a light beam toward the passageway. The first light receiver is disposed on the three-way pipe and configured for receiving the light beam and outputting a luminous flux signal. The processor is connected to the first light receiver and configured for calculating a luminous flux reference value according to the luminous flux signal. The luminous flux reference value is used for determining whether outputs a low nebulized medicine concentration warning.
Abstract:
A virtual image display apparatus, adapted for medical surgical applications, with which a surgical device is operated is provided. The virtual image display apparatus includes at least one virtual image display module which is disposed in front of at least one eye of a user. The virtual image display module includes an image display unit and a beam splitting unit. The image display unit provides an image beam, wherein the image beam includes at least one type of surgical information. The beam splitting unit is disposed on the transmission path of the image beam and an object beam from an environment object. The beam splitting unit causes at least part of the object beam to be transmitted to the eye, and causes at least part of the image beam to be transmitted to the eye to display a virtual image.
Abstract:
An interactive display device and an interactive display system are provided. The interactive display device includes: a body having a microprocessor disposed therein; an optical project unit for projecting a pattern to a scene; an image capture unit for capturing an image of the scene containing the pattern; and a display unit for displaying the image. The interactive display device and the interactive display system can locate exactly through the image containing the pattern. Therefore, the present disclosure has the efficiency of easy communication.