Abstract:
A wireless device includes a shell and an array antenna. The shell is configured with a low reflection structure. The array antenna disposed inside the shell, and the low reflection structure is located within a radiation range of the array antenna after beam scanning. The low reflection structure includes a plurality of slots arranged periodically.
Abstract:
An aspect of the disclosure includes a beam indication method for a multibeam wireless communication system, including: obtaining a number of candidate beams and a number of active beams to determine a plurality of beam groups, wherein the beam groups are selections of the active beams from the candidate beams; extracting a plurality of sets of the beam groups from the beam groups, wherein the plurality of sets of the beam groups comprises a first beam group set; assigning a first indicator to the first beam group set; assigning a beam indicator to one of the beam groups in the first beam group set to generate a codebook for beam indication according to the first indicator and the beam indicator.
Abstract:
A software-defined radio system for detecting packets is disclosed, including: a transmitting end configured for assigning a preamble and a postamble to a start position and an end position of a packet of a signal, respectively, before transmitting the signal; and a receiving end configured for detecting if a packet exists in the air or in a channel based on the preamble and the postamble, wherein the receiving end stores the signal in memory when detecting the preamble, and stops storing the signal in the memory and transmits the signal to a computing device when detecting the postamble. A packet detection method for a software-defined radio system is also provided.
Abstract:
An aspect of the disclosure includes a beam tracking method used by a user equipment, the method would include: receiving, within a first time period, a first plurality of reference signal sequences including a first reference signal sequence associated with a first cell beam and a second reference signal sequence associated with a second cell beam; measure a beam quality which include a first measurement of a first cell beam and a second measurement of a second cell beam; generating, based on the beam quality, a measurement report; and transmitting the measurement report.
Abstract:
According to one of the exemplary embodiments, the proposed network entry method is applicable to a user equipment and includes: receiving, within an mmWave band, Q scan beams which have Q IDs over M mmWave time units as each mmWave time unit includes a payload region and a BF header region that includes N BSSs with each of the BSSs corresponding to a different one of the Q scan beams, wherein M, N, and Q are integers greater than 1 and M*N=Q; determining a best beam of the UE based on the BSSs of the Q scan beams; determining a best scan beam of the Q scan beams based on the BSSs of the Q scan beams after determining the best beam of the UE; and transmitting, within the mmWave band, a random access preamble (RAP) by using the best beam of the UE.
Abstract:
The present disclosure proposes a hierarchical beamforming method and a base station and a user equipment using the same. The method includes following steps. A network entry procedure is performed via a plurality of coarse beams by using a superframe header of a superframe corresponding to each of the coarse beams. In response to a success message associated with the network entry procedure being received, a network entry done message is transmitted by using a preferred coarse beam among the coarse beams. A user equipment (UE) connection is performed via a plurality of fine beams within a direction range of the preferred coarse beam, so as to determine a preferred fine beam by using a frame header of a basic frame corresponding to each of the fine beams, and perform a data packet transmission by using a packet transmission block of the basic frame corresponding to the preferred fine beam.
Abstract:
A wireless device includes a shell and an array antenna. The shell is configured with a low reflection structure. The array antenna disposed inside the shell, and the low reflection structure is located within a radiation range of the array antenna after beam scanning. The low reflection structure includes a plurality of slots arranged periodically.
Abstract:
An antenna device and a method for calibrating an antenna device are provided, and the method includes: transmitting or receiving a signal by a first antenna unit and a second antenna unit; receiving the signal from the first antenna unit and the second antenna unit or transmitting the signal to the first antenna unit and the second antenna unit by a probe, wherein the first antenna unit and the second antenna unit are at a first distance from the probe respectively; and calibrating the first antenna unit and the second antenna unit according to a beat frequency of the signal corresponding to the first distance.
Abstract:
An aspect of the disclosure includes a beam indication method for a multibeam wireless communication system, including: obtaining a number of candidate beams and a number of active beams to determine a plurality of beam groups, wherein the beam groups are selections of the active beams from the candidate beams; extracting a plurality of sets of the beam groups from the beam groups, wherein the plurality of sets of the beam groups comprises a first beam group set; assigning a first indicator to the first beam group set; assigning a beam indicator to one of the beam groups in the first beam group set to generate a codebook for beam indication according to the first indicator and the beam indicator.
Abstract:
A beamforming method of millimeter wave communication is introduced herein. the beamforming method is adapted to a base station and includes following steps. A plurality of periodic signals are transmitted by using a frame header of M radio frames via Q base station beams designated as Q scan beams while performing a network entry, wherein M≥1 and Q≥1. Data packets are transceived by using a payload region of the M radio frames via at least one scheduled beam while a user equipment connection is performed via the scheduled beam selected from the Q base station beams.