Abstract:
Methods and apparatus for indicating a radio resource to a receiver in a wireless communication system, the method including allocating a plurality of reference signals (RSs) for beam indication, selecting one of the plurality of RSs for the receiver, and transmitting information about the selected RS to the receiver, wherein the information includes a reference indication (RI) that indicates the radio resource of the selected RS.
Abstract:
According to one of the exemplary embodiments, the proposed network entry method is applicable to a user equipment and includes: receiving, within an mmWave band, Q scan beams which have Q IDs over M mmWave time units as each mmWave time unit includes a payload region and a BF header region that includes N BSSs with each of the BSSs corresponding to a different one of the Q scan beams, wherein M, N, and Q are integers greater than 1 and M*N=Q; determining a best beam of the UE based on the BSSs of the Q scan beams; determining a best scan beam of the Q scan beams based on the BSSs of the Q scan beams after determining the best beam of the UE; and transmitting, within the mmWave band, a random access preamble (RAP) by using the best beam of the UE.
Abstract:
Methods and apparatus for indicating a radio resource to a receiver in a wireless communication system, the method including allocating a plurality of reference signals (RSs) for beam indication, selecting one of the plurality of RSs for the receiver, and transmitting information about the selected RS to the receiver, wherein the information includes a reference indication (RI) that indicates the radio resource of the selected RS.
Abstract:
In one of the exemplary embodiments, the disclosure is directed to a post network entry connection method applicable to a user equipment. The method would include not limited to: receiving a time unit which may include a payload region and a downlink header region which may include a first BQMR for a first scan beam and a second BQMR for a second scan beam; obtaining a first reference signal from the first BQMR and a second reference signal from the second BQMR; calculating a first signal quality measurement by using the first reference signal and calculating a second signal quality measurement by using the second reference signal; selecting the first scan beam based on the first signal quality measurement being better than at least the second signal quality measurement; and transmitting the first signal quality measurement which corresponds to the first scan beam via another time unit.
Abstract:
The present invention relates to a transmitter and a receiver including multiple first and second transceiving units. Each of the first and the second transceiving units includes a first and a second radiation slices and a first and a second transceiving circuits disposed thereon. In the transmitter, the first and the second transceiving units receive first and second internal transmission signals at first and second polarization from the first and the second radiation slices, and transmit first and second external transmission signals generated from transformation through the first and the second radiation slices. In the receiver, the first and the second transceiving units receive first and second external reception signals at first and second polarization through the first and the second radiation slices, and transmit first and second internal reception signals at first and second polarization generated from transformation through the first and the second radiation slices.
Abstract:
In one of the exemplary embodiments, the disclosure is directed to a post network entry connection method applicable to a user equipment. The method would include not limited to: receiving a time unit which may include a payload region and a downlink header region which may include a first BQMR for a first scan beam and a second BQMR for a second scan beam; obtaining a first reference signal from the first BQMR and a second reference signal from the second BQMR; calculating a first signal quality measurement by using the first reference signal and calculating a second signal quality measurement by using the second reference signal; selecting the first scan beam based on the first signal quality measurement being better than at least the second signal quality measurement; and transmitting the first signal quality measurement which corresponds to the first scan beam via another time unit.
Abstract:
A software-defined radio system for detecting packets is disclosed, including: a transmitting end configured for assigning a preamble and a postamble to a start position and an end position of a packet of a signal, respectively, before transmitting the signal; and a receiving end configured for detecting if a packet exists in the air or in a channel based on the preamble and the postamble, wherein the receiving end stores the signal in memory when detecting the preamble, and stops storing the signal in the memory and transmits the signal to a computing device when detecting the postamble. A packet detection method for a software-defined radio system is also provided.
Abstract:
A visible light communication method performs visible light communication by using a visible light source. In searching a central frequency of the visible light source, a plurality of central-frequency training packets are sent, the central-frequency training packets including a plurality of central-frequency candidates, and one among the plurality of central-frequency candidates is selected as the central frequency of the visible light source based on a first decoding result on the plurality of central-frequency training packets. In searching a bandwidth of the visible light source, a plurality of bandwidth training packets are sent, the bandwidth training packets including a plurality of bandwidth candidates and the central frequency of the visible light source, and one among the plurality of bandwidth candidates is selected as the bandwidth of the visible light source based on a second decoding result on the plurality of bandwidth training packets.
Abstract:
The present invention relates to a transmitting device and a receiving device. The transmitting device includes a controller, at least a feeding antenna and a plurality of transceiving modules. The controller generates a plurality of set of module control signals; the feeding antenna radiately transmits at least an internal transmission signal. Each transceiving module includes a plurality of transceiving units, and each transceiving unit includes a radiation slice and a transceiving circuit. A lengthwise edge of the radiation slice has a first end and a second end, and the first end and the second end of the lengthwise edge are toward an inner lateral side and an outer lateral side, respectively. The transceiving module performs transmission operation or reflection operation according to the module control signals.
Abstract:
A beamforming method of millimeter wave communication is introduced herein. the beamforming method is adapted to a base station and includes following steps. A plurality of periodic signals are transmitted by using a frame header of M radio frames via Q base station beams designated as Q scan beams while performing a network entry, wherein M≧1 and Q≧1. Data packets are transceived by using a payload region of the M radio frames via at least one scheduled beam while a user equipment connection is performed via the scheduled beam selected from the Q base station beams.