Abstract:
A method for controlling the flow of data in a near field communication appliance having a plurality of secure elements is provided. The method includes receiving a first communication, sent by an external appliance, which is intended for an application located in one of a plurality of secure elements of the near field communication appliance. The method further includes determining which of the secure elements contains the application, and taking measures in order to ensure that a further communication exclusively between the external appliance and the secure element contains the addressed application. In addition, appropriate mobile terminals for NFC communication are disclosed.
Abstract:
A communication method for the communication between two appliances which are set up for communication in a first communication mode is provided. The method includes sending an activation sequence in a second communication mode from the first to the second appliance in order to initiate communication based on the first communication mode; sending data from the second appliance to the first appliance based on the first communication mode. The activation sequence sent to the second appliance includes an initialization sequence and a request for data communication in the first communication mode. In addition, a corresponding electronic appliance and system are provided.
Abstract:
An electronic inhaler, including: an antenna; a contactless module configured to receive via the antenna from an authentication circuit of a removably-mounted liquid container, a liquid container authentication signal; and a processor configured to control an operational state of a heater, which is configured to vaporize a liquid of the removably-mounted liquid container, based on the liquid container authentication signal.
Abstract:
In various embodiments, an electronic component is provided. The electronic component may include a supply bus configured to provide a supply voltage for an electronic circuit. The electronic component may further include a voltage-controlled oscillator, which is coupled to the supply bus and is configured to generate a clock signal with a clock frequency according to the supply voltage. The electronic component may further include at least one reference oscillator, which is configured to generate a reference clock signal with a reference clock frequency, and a comparator, which is coupled to the voltage-controlled oscillator and the at least one reference oscillator and is configured to compare the clock signal with the reference clock signal and, on the basis of the comparison, either to output the clock signal to the electronic circuit or to suppress it.
Abstract:
In accordance with various embodiments, a radio communication processor arrangement including a chip and a battery integrated into the chip is provided.
Abstract:
A method for controlling the flow of data in a near field communication appliance having a plurality of secure elements is provided. The method includes receiving a first communication, sent by an external appliance, which is intended for an application located in one of a plurality of secure elements of the near field communication appliance. The method further includes determining which of the secure elements contains the application, and taking measures in order to ensure that a further communication exclusively between the external appliance and the secure element contains the addressed application. In addition, appropriate mobile terminals for NFC communication are disclosed.
Abstract:
A circuit arrangement is provided, having an antenna, a first circuit coupled to the antenna and configured to receive an antenna signal, which contains first data, and to process the antenna signal, as a result of which it produces a processed antenna signal having a different voltage level than that of the antenna signal. The first data are data transmitted from a communication device to the arrangement. The arrangement further includes a second circuit coupled to the first circuit via a wire-based interface. The first circuit is configured to transmit the processed antenna signal to the second circuit by a first channel of the wire-based interface and the second circuit is configured to transmit second data to the first circuit by a second channel of the wire-based interface. The first channel and the second channel are different. The second data are configuration data for configuring the first circuit.
Abstract:
A method for controlling the flow of data in a near field communication appliance having an interposed element and a plurality of secure elements is disclosed. The method includes: receiving a first communication, sent by an external appliance, which is intended for an application located in one of the secure elements; determining whether a first one of the secure elements contains the application; and deactivating an interface from the interposed element to the first secure element if the first secure element does not contain the application. Corresponding systems and appliances for near field communication are also disclosed.
Abstract:
A near-field communication device having one or more processors configured to control the near-field communication device, an energy supplier having an energy supply circuit and a supply antenna configured to provide energy to a second antenna circuit arranged externally to the near-field communication device, wherein the supply antenna of the energy supplier is galvanically coupled to the energy supply circuit, and a first antenna circuit having a first communication circuit and a first antenna, wherein the first communication circuit is configured for communication with a second communication circuit of the second antenna circuit by means of an inductive coupling by means of the first antenna of the first antenna circuit.
Abstract:
A smartcard having a security controller, a fingerprint sensor, and an energy supply circuit configured to supply the security controller and the fingerprint sensor with energy, wherein the security controller and the fingerprint sensor are configured to communicate with one another by means of inductive coupling.