Abstract:
In various embodiments, an antenna arrangement is provided. The antenna arrangement includes a first antenna and a second antenna. The first antenna and the second antenna are arranged substantially in the same plane. The first antenna and the second antenna are arranged with respect to one another in such a manner that an intermediate area is defined between the first antenna and the second antenna. The antenna arrangement further includes a controller which is configured to control the first antenna and the second antenna in such a manner that a magnetic field produced in the intermediate area is greater, in terms of magnitude, than the magnetic field generated by the first antenna in the intermediate area and the magnetic field generated by the second antenna in the intermediate area.
Abstract:
In various embodiments, an electronic component is provided. The electronic component may include a supply bus configured to provide a supply voltage for an electronic circuit. The electronic component may further include a voltage-controlled oscillator, which is coupled to the supply bus and is configured to generate a clock signal with a clock frequency according to the supply voltage. The electronic component may further include at least one reference oscillator, which is configured to generate a reference clock signal with a reference clock frequency, and a comparator, which is coupled to the voltage-controlled oscillator and the at least one reference oscillator and is configured to compare the clock signal with the reference clock signal and, on the basis of the comparison, either to output the clock signal to the electronic circuit or to suppress it.
Abstract:
A system including a first device having a push-pull circuit configured to transmit a synchronization symbol; and a second device coupled to the first device by a single wire interface, and configured to, in response to receiving the synchronization symbol, transmit a data symbol to the first device while the push-pull circuit is in a tristate phase.
Abstract:
A method for controlling the flow of data in a near field communication appliance having an interposed element and a plurality of secure elements connected to the interposed element is disclosed. The method includes receiving a first communication at a first one of the secure elements. The first communication is sent by an external appliance and suited to an application located in one of the secure elements. The method further includes testing, by means of the first secure element, whether the first secure element contains the application. The first secure element is muted if the first secure element does not contain the application. A corresponding near field communication appliance and terminals are also disclosed.
Abstract:
A method for controlling the flow of data in a near field communication appliance having an interposed element and a plurality of secure elements is disclosed. The method includes: receiving a first communication, sent by an external appliance, which is intended for an application located in one of the secure elements; determining whether a first one of the secure elements contains the application; and deactivating an interface from the interposed element to the first secure element if the first secure element does not contain the application. Corresponding systems and appliances for near field communication are also disclosed.
Abstract:
A near-field communication device having one or more processors configured to control the near-field communication device, an energy supplier having an energy supply circuit and a supply antenna configured to provide energy to a second antenna circuit arranged externally to the near-field communication device, wherein the supply antenna of the energy supplier is galvanically coupled to the energy supply circuit, and a first antenna circuit having a first communication circuit and a first antenna, wherein the first communication circuit is configured for communication with a second communication circuit of the second antenna circuit by means of an inductive coupling by means of the first antenna of the first antenna circuit.
Abstract:
According to one embodiment, an electronic circuit is described comprising an output circuit configured to output data elements, an input circuit configured to receive the data elements from the output circuit wherein the input circuit is clocked by a clock signal and receives the data elements in accordance with its clocking, a signaling circuit configured to, when the output circuit switches from the output of one data element to the output of a following data element, signal to interrupt the clocking of the input circuit and a controller configured to interrupt the clocking of the input circuit in response to the signaling.
Abstract:
Different exemplary embodiments provide a power supply apparatus for providing a voltage from an electromagnetic field, which apparatus has a conversion device which is set up to derive a voltage from a wirelessly received electromagnetic field, and a decoupling device which is coupled to the conversion device and has a first connection and a second connection, at each of which a supply voltage is provided, the decoupling device suppressing an effect of the circuits coupled to the first and second connections on the power supply apparatus.
Abstract:
In accordance with various embodiments, a smart card is described which has an antenna, which is configured to receive an electromagnetic signal, a rectifier, which is configured to rectify the received signal, and a capacitive or an inductive DC-to-DC voltage converter, which is configured to provide a supply voltage on the basis of the rectified signal.
Abstract:
A communication method for the communication between two appliances which are set up for communication in a first communication mode is provided. The method includes sending an activation sequence in a second communication mode from the first to the second appliance in order to initiate communication based on the first communication mode; sending data from the second appliance to the first appliance based on the first communication mode. The activation sequence sent to the second appliance includes an initialization sequence and a request for data communication in the first communication mode. In addition, a corresponding electronic appliance and system are provided.