Abstract:
In one example a controller comprises logic, at least partially including hardware logic, configured to detect a key phrase in a received audio signal, and in response to the key phrase, to transmit a signal to a personal assistant in a remote electronic device, determine whether an audio input was received, and in response to a determination that additional audio input was received prior to receiving a response from the personal assistant in the remote electronic device, to buffer the audio input in a memory and forward the audio input to the personal assistant in the remote electronic device. Other examples may be described.
Abstract:
Gesture-controlled virtual reality systems and methods of controlling the same are disclosed herein. An example apparatus includes an on-body sensor to output first signals associated with at least one of movement of a body part of a user or a position of the body part relative to a virtual object and an off-body sensor to output second signals associated with at least one of the movement or the position relative to the virtual object. The apparatus also includes at least one processor to generate gesture data based on at least one of the first or second signals, generate position data based on at least one of the first or second signals, determine an intended action of the user relative to the virtual object based on the position data and the gesture data, and generate an output of the virtual object in response to the intended action.
Abstract:
In one example a base station for an electronic device comprises a charging station, an audio interface, logic, at least partially including hardware logic, configured to detect a first electronic device within a geographic region proximate the charging device, and in response to detecting the first electronic device 100, to establish a communication link with the first electronic device via a wireless communication channel, activate the audio interface to receive audio input. Other examples may be described.
Abstract:
A distributed direct memory access (DMA) method, apparatus, and system is provided within a system on chip (SOC). DMA controller units are distributed to various functional modules desiring direct memory access. The functional modules interface to a systems bus over which the direct memory access occurs. A global buffer memory, to which the direct memory access is desired, is coupled to the system bus. Bus arbitrators are utilized to arbitrate which functional modules have access to the system bus to perform the direct memory access. Once a functional module is selected by the bus arbitrator to have access to the system bus, it can establish a DMA routine with the global buffer memory.
Abstract:
Gesture-controlled virtual reality systems and methods of controlling the same are disclosed herein. An example apparatus includes an on-body sensor to output first signals associated with at least one of movement of a body part of a user or a position of the body part relative to a virtual object and an off-body sensor to output second signals associated with at least one of the movement or the position relative to the virtual object. The apparatus also includes at least one processor to generate gesture data based on at least one of the first or second signals, generate position data based on at least one of the first or second signals, determine an intended action of the user relative to the virtual object based on the position data and the gesture data, and generate an output of the virtual object in response to the intended action.
Abstract:
Methods, apparatus, systems and articles of manufacture are disclosed for distributed automatic speech recognition. An example apparatus includes a detector to process an input audio signal and identify a portion of the input audio signal including a sound to be evaluated, the sound to be evaluated organized into a plurality of audio features representing the sound. The example apparatus includes a quantizer to process the audio features using a quantization process to reduce the audio features to generate a reduced set of audio features for transmission. The example apparatus includes a transmitter to transmit the reduced set of audio features over a low-energy communication channel for processing.
Abstract:
Methods, apparatus, systems and articles of manufacture are disclosed for distributed automatic speech recognition. An example apparatus includes a detector to process an input audio signal and identify a portion of the input audio signal including a sound to be evaluated, the sound to be evaluated organized into a plurality of audio features representing the sound. The example apparatus includes a quantizer to process the audio features using a quantization process to reduce the audio features to generate a reduced set of audio features for transmission. The example apparatus includes a transmitter to transmit the reduced set of audio features over a low-energy communication channel for processing.
Abstract:
A wearable sensor system is disclosed that provides a measurable magnetic field that changes horizontally within the range of motion of human limbs. The wearable sensor system includes a magnetic sensing device, and one or more magnet devices that provide the measurable magnetic field with a strength exceeding the Earth's magnetic field. To this end, the magnetic sensing system provides a “personal” magnetic field about a user, with that magnetic field traveling with the user and overpowering adjacent interfering fields. The wearable sensor system may include a sensor arrangement that measures a strength of the personal magnetic field and field direction to perform horizontal localization, and may send a representation of a same to a remote computing device to cause an action to occur. Some such actions include output of pre-recorded or synthesized musical notes, for example.
Abstract:
Processing techniques and device configurations for performing and controlling output effects at a plurality of wearable devices are generally described herein. In an example, a processing technique may include receiving, at a computing device, an indication of a triggering gesture that occurs at a first wearable device, determining an output effect corresponding to the indication of the triggering gesture, and in response to determining the output effect, transmitting commands to computing devices that are respectively associated with a plurality of wearable devices, the commands causing the plurality of wearable devices to generate the output effect at the plurality of wearable devices. In further examples, output effects such as haptic feedback, light output, or sound output, may be performed by the plurality of wearable devices, associated computing devices, or other controllable equipment.
Abstract:
Embodiments include a wearable device, such as a head-worn device. The wearable device includes a first microphone to receive a first sound signal from a wearer of the wearable device; a second microphone to receive a second sound signal from the wearer of the wearable device; and a processor to process the first sound signals and the second sound signals to determine that the first and second sound signals originate from the wearer of the wearable device.