Abstract:
A device includes an enclosure and logic. The enclosure includes a plurality of capacitive touch sensor arrays disposed at least on two of a top side, a bottom side, a left side, a right side, a front side, and a back side of the device. The enclosure also includes a first display on the front side of the device. The logic receives touch interaction information from the plurality of capacitive touch sensor arrays and initiates an action based at least in part on the touch interaction information.
Abstract:
Technology for a wearable heart rate monitoring device is disclosed. The wearable heart rate monitoring device can include a heart rate sensor operable to collect sensor data, a modulator operable to generate a modulated signal that includes the sensor data, a housing configured to engage a body feature or surface in a manner that allows for heart rate detection, and a communication module configured to transmit the sensor data in the modulated signal to a mobile computing device via a wired connection that is power limited. The mobile computing device is typically configured to demodulate the modulated signal in order to extract the sensor data.
Abstract:
Technology for detecting whether a wearable device is misaligned is disclosed. The device can include a number of sensors, such as heart rate, temperature, or other sensors used to sense a physiologic aspect of the user, such as heart rate and can further contain components capable of providing data as to the proper alignment or placement of the wearable device on the user. The wearable device may communicate with a computing device, such as a mobile device which can receive data from the wearable device and output notifications to the user, including notifications about proper or improper placement or alignment of the wearable device.
Abstract:
A device includes an enclosure and logic. The enclosure includes a plurality of capacitive touch sensor arrays disposed at least on two of a top side, a bottom side, a left side, a right side, a front side, and a back side of the device. The enclosure also includes a first display on the front side of the device. The logic receives touch interaction information from the plurality of capacitive touch sensor arrays and initiates an action based at least in part on the touch interaction information.
Abstract:
Various embodiments are generally directed to an apparatus, method and other techniques for detecting, by one or more sensor components, at least one sensor input, and executing, by logic, at least one instruction to cause an event on a wearable wireless device, the event comprising at least one of a change in a physical parameter on the wearable wireless device and a wireless communication with a computing device via a transceiver.
Abstract:
A device includes an enclosure and logic. The enclosure includes a plurality of capacitive touch sensor arrays disposed at least on two of a top side, a bottom side, a left side, a right side, a front side, and a back side of the device. The enclosure also includes a first display on the front side of the device. The logic receives touch interaction information from the plurality of capacitive touch sensor arrays and initiates an action based at least in part on the touch interaction information.
Abstract:
A system and method for data transmission and power supply capability over an audio jack for mobile devices are disclosed. A particular embodiment includes: a peripheral device including an energy storage component, a microphone using a microphone bias voltage, and a select switch configured to provide a first switch position wherein charging of the energy storage component using the microphone bias voltage via the microphone conductor is enabled, the select switch being configured provide a second switch position wherein charging of the energy storage component using the microphone bias voltage via the microphone conductor is disabled; and a mobile device and an application (app) executable in the mobile device to produce a switching tone on the audio signal conductor of the audio jack, the switching tone causing the select switch to transition to the first switch position or the second switch position.
Abstract:
Processing techniques and device configurations for performing and controlling output effects at a plurality of wearable devices are generally described herein. In an example, a processing technique may include receiving, at a computing device, an indication of a triggering gesture that occurs at a first wearable device, determining an output effect corresponding to the indication of the triggering gesture, and in response to determining the output effect, transmitting commands to computing devices that are respectively associated with a plurality of wearable devices, the commands causing the plurality of wearable devices to generate the output effect at the plurality of wearable devices. In further examples, output effects such as haptic feedback, light output, or sound output, may be performed by the plurality of wearable devices, associated computing devices, or other controllable equipment.
Abstract:
Technologies are described herein that allow a user to wake up a computing device operating in a low-power state and for the user to be verified by speaking a single wake phrase. Wake phrase recognition is performed by a low-power engine. In some embodiments, the low-power engine may also perform speaker verification. In other embodiments, the mobile device wakes up after a wake phrase is recognized and a component other than the low-power engine performs speaker verification on a portion of the audio input comprising the wake phrase. More than one wake phrases may be associated with a particular user, and separate users may be associated with different wake phrases. Different wake phrases may cause the device transition from a low-power state to various active states.
Abstract:
Technology for a wearable heart rate monitoring device is disclosed. The wearable heart rate monitoring device can include a heart rate sensor operable to collect sensor data, a modulator operable to generate a modulated signal that includes the sensor data, a housing configured to engage a body feature or surface in a manner that allows for heart rate detection, and a communication module configured to transmit the sensor data in the modulated signal to a mobile computing device via a wired connection that is power limited. The mobile computing device is typically configured to demodulate the modulated signal in order to extract the sensor data.