Abstract:
A solid-state lamp is described that includes a wavelength conversion component located at one end of the lamp. The solid-state lamp comprises: one or more solid-state light emitting devices (typically LEDs); a thermally conductive body; at least one duct; and a photoluminescence wavelength conversion component remote to the one or more LEDs, located at one end of the lamp. The lamp is configured such that the duct extends through the photoluminescence wavelength conversion component and defines a pathway for thermal airflow through the thermally conductive body to thereby provide cooling of the body and the one or more LEDs.
Abstract:
An inventive LED-based lamp, lamp cover component, and methods for manufacturing thereof are disclosed which provides a light diffusive lamp cover having a diffusivity (transmittance) that is different for different areas (zones or regions) of the cover. The diffusivity and location of those areas are configured so that the emission pattern of the whole lamp meets desired emissions characteristics and optical efficiency levels. The diffusive cover may have any number of specifically delineated diffusivity areas. Alternatively, the cover may provide a gradient of increasing/decreasing diffusivity portions over the cover.
Abstract:
A solid-state lamp comprising: an array of solid-state excitation sources and a photoluminescence wavelength conversion component comprising a layer of photoluminescence material and a coupling optic. The layer of photoluminescence material is remote to the excitation sources and the coupling optic is disposed between the excitation sources and the layer of photoluminescence material. The ratio of the photoluminescence material surface area of the layer of the photoluminescence material to the excitation source surface area for the array of solid-state excitation sources is at least 3 to 1.
Abstract:
A light emitting device comprises: a solid-state light emitter which generates blue excitation light with a dominant wavelength from 440 nm to 470 nm; a yellow to green photoluminescence material which generates light with a peak emission wavelength from 500 nm to 575 nm; a broadband orange to red photoluminescence material which generates light with a narrowband peak emission wavelength from 580 nm to 620 nm; and a narrowband red manganese-activated fluoride phosphor which generates light with a peak emission wavelength from 625 nm to 635 nm. The device generates white light with a spectrum having a broad emission peak from about 530 nm to about 600 nm and a narrow emission peak and wherein the ratio of the peak emission intensity of the broad emission peak to the peak emission intensity of the narrow emission peak is at least 20%.
Abstract:
A solid-state linear lamp comprises a co-extruded component, the co-extruded component comprising an elongate lens and a layer of photoluminescent material. The elongate lens is for shaping light emitted from the lamp and comprises an elongate interior cavity. The layer of a photoluminescent material is located on an interior wall of the elongate interior cavity. The lamp further comprises an array of solid-state light emitters configured to emit light into the elongate interior cavity.
Abstract:
A solid-state lamp is described that includes a wavelength conversion component located at one end of the lamp. The solid-state lamp comprises: one or more solid-state light emitting devices (typically LEDs); a thermally conductive body; at least one duct; and a photoluminescence wavelength conversion component remote to the one or more LEDs, located at one end of the lamp. The lamp is configured such that the duct extends through the photoluminescence wavelength conversion component and defines a pathway for thermal airflow through the thermally conductive body to thereby provide cooling of the body and the one or more LEDs.
Abstract:
A method is described for manufacturing an LED lamp module, where the individual LEDs in the lamp module do not include a conventional package structure and/or integrated encapsulation on the individual LEDs. The lamp module includes a co-extruded component, the co-extruded component comprising an elongate lens and a layer of photoluminescent material. The elongate lens is for shaping light emitted from the lamp and comprises an elongate interior cavity. The layer of a photoluminescent material is located on an interior wall of the elongate interior cavity. An optical medium is provided as part of the manufacturing process for the lamp module, where the optical medium surrounds the LEDs in an array of LEDs. The optical medium can be co-extruded over the LEDs. In addition, a liquid optical medium can be applied in the assembly process to remove air interfaces between the LEDs and component.
Abstract:
A solid-state lamp is described that includes a first light emission zone and a second light emission zone, where the first light emission zone is longitudinally spaced apart from the second light emission zone. The light emission zones comprise a photoluminescence wavelength conversion component and a solid state light emitting device. The lamp comprises a lower body, a central body, and an upper duct, where the central body, and the upper duct together define at least one passageway/duct for thermal airflow.