Abstract:
An apparatus and method are described for sponsoring service and preferential traffic handling, (i.e., data connectivity) by wireless transmit/receive units (WTRUs). A first WTRU may initiate user sponsoring of a second WTRU via an application server (AS). The first WTRU may receive a service trigger from the AS and forward the service trigger to the second WTRU. The second WTRU may then initiate a sponsored session with the AS using the service trigger in order to receive a service from the AS. The first WTRU may also request the AS to transfer a credit to the second WTRU. The AS may establish a direct communication link with a charging system including an online charging function (OCF) and a charging data function (CDF). The AS may send a request to a network to provide preferential traffic handling needed to deliver content to the second WTRU.
Abstract:
A method of Inter-User Equipment (UE) Transfer (IUT) for use in an Internet Protocol (IP) Multimedia Subsystem (IMS) capable wireless transmit/receive unit (WTRU), the method comprising: receiving, at the IMS capable WTRU, an IUT session transfer command from a non-IMS capable WTRU via non-IMS signaling; translating, at the IMS capable WTRU, the IUT session transfer command to an IMS based message; and transmitting, from the IMS capable WTRU, the translated IMS based message to a Service Centralization and Continuity Application Server (SCC AS).
Abstract:
A method and apparatus for use in a network storage control peer (NSCP) supporting peer to peer (P2P) operation are disclosed. The method includes receiving a content map request message and transmitting a content map response message including an indication that a CDN-stored content piece is available from the NSCP; and, receiving a content fetch request message for the content piece and transmitting a response message including a redirection command and the CDN URI for the content piece.
Abstract:
A WTRU may receive a first data flow from a source device such as a correspondence node and perform a seamless IUT such that the correspondent node is unaware that the flow has been transferred to a different WTRU. The WTRU may register with a first home agent, wherein the first home agent receives a plurality of messages addressed for a home address. The home agent may forward the messages to the WTRU at a first care-of-address. The WTRU may send a binding update to the first home agent. The binding update may comprise a second traffic selector and a second action. The second action may specify that a second message of the plurality of messages is to be forwarded to a different WTRU when the second message matches the second traffic selector.
Abstract:
A method of Inter-User Equipment (UE) Transfer (IUT) for use in an Internet Protocol (IP) Multimedia Subsystem (IMS) capable wireless transmit/receive unit (WTRU), the method comprising: receiving a registration request from a non-IMS capable WTRU; translating the registration request to an IMS based message; transmitting the translated IMS based message to a Service Centralization and Continuity Application Server (SCC AS), transmitting an IUT transfer command, transmitting an IUT process message; receiving an IUT process-accept message; and establishing an IMS session between the non-IMS capable WTRU and the remote party.
Abstract:
Techniques for inter-user equipment (UE) transfer (IUT) are disclosed. An application server may receive an IUT request for transfer of a media session toward at least one initial UE such that the media session is to be played by at least two target UEs. The server may determine eligibility for IUT with group synchronization based on the request. The server may send a message to the initial UE that IUT with group synchronization is not allowed on a condition that IUT with group synchronization is not allowed. Further, the server may trigger inter-destination media synchronization (IDMS) for group synchronization of media sessions among the UEs on a condition that IUT with group synchronization is allowed. The media sessions may include a first media session and second media session. The media stream may be played by at least two UEs that are geographically separated after the transfer.
Abstract:
An application server receives a request for service from a wireless transmit/receive unit (WTRU) associated with a home network that includes a home subscriber server (HSS) and a bootstrapping server function (BSF) coupled via a Zh reference point. The application server authenticates the WTRU at least in part by (i) redirecting the WTRU to an identity provider co-located with a network application function (IDP/NAF) and coupled to the BSF via a Zn reference point and (ii) receiving an assertion from the WTRU that the IDP/NAF has authenticated the WTRU based on user security settings retrieved from the BSF by the IDP/NAF over the Zn reference point. After authenticating the WTRU, the application server (i) retrieves user-specific Sh-reference-point-type data from the HSS via the IDP/NAF over the Zn and Zh reference points and (ii) provides the service to the WTRU based on the retrieved user-specific Sh-reference-point-type data.
Abstract:
A method and apparatus are described for synchronizing mobile station (i.e., wireless transmit/receive unit (WTRU)) media flows during a collaboration session. Inter-WTRU transfer request messages, flow addition request messages and session update request messages may be exchanged between a plurality of WTRUs and a session continuity control application server (SCC-AS). Each of the messages may include a session description protocol (SDP) attribute line containing time synchronization information (e.g., a presentation time offset (PTO) information element (IE), a media flow group identity (ID) and a synchronization tolerance IE). The SCC-AS may update the time synchronization information and include the updated information in messages it sends to the WTRUs, which may re-synchronize their respective media flows based on the updated time synchronization information.
Abstract:
A method and apparatus for interworking between a mobile network operator and an application provider are disclosed. A network application function (NAF) may be co-located with an OpenID provider such that an application server may communicate with the NAF to access a home subscriber server (HSS) via a bootstrapping server function (BSF). The interfaces between BSF and HSS, and between BSF and NAF may be enhanced to carry information that is available through Sh interface between the application server and the HSS. When the WTRU is roaming in a visited network, the application server may communicate with the visited network for charging and policing for serving the service request from the WTRU. The application server may be co-located with an NAF, and may authenticate the WTRU using Generic Bootstrapping Architecture, and may communicate with a BSF in a home network via an eZn-proxy function to access an HSS.
Abstract:
Disclosed herein are methods and systems for integrating peer-to-peer (P2P) networks with content delivery networks (CDNs). In an embodiment, a method for use in a network storage control peer (NSCP) supporting P2P operation includes receiving swarm stats from a tracker; determining, based on the received swarm stats, a P2P rarity associated with a content piece; and responsive to the determined P2P rarity, transmitting an upload request message to an ingestion gateway, wherein the upload request message indicates that the content piece is to be uploaded to a CDN.