Abstract:
A dielectric for superconducting electronics (e.g., amorphous silicon, silicon oxide, or silicon nitride) is fabricated with reduced loss tangent by fluorine passivation throughout the bulk of the layer. A fluorinant (gas or plasma) is injected into a process chamber, either continuously or as a series of pulses, while the dielectric is being formed by chemical vapor deposition on a substrate. To further reduce defects, the silicon may be deposited from a silicon precursor that includes multiple co-bonded silicon atoms, such as disilane or trisilane.