Abstract:
A system, method and computer program product for sorting Integrated Circuits (chips), particularly microprocessor chips, and particularly that predicts chip performance or power for sorting purposes. The system and method described herein uses a combination of performance-predicting parameters that are measured early in the process, and applies a unique method to project where the part, e.g., microprocessor IC, will eventually be sorted. Sorting includes classifying the IC product to a subset of a family of products with the product satisfying certain performance characteristics or specifications, in the early stages of manufacturing, e.g., before the end product is fully fabricated.
Abstract:
A mechanism is provided for statistical determination of power circuit connectivity based on signal detection in a circuit. Signal data from the circuit gathered and a determination is made as to whether a signal of interest is present in the gathered signal data from the circuit using a statistical analysis of the gathered signal data. The statistical analysis comprises using a mean current value and statistical deviation of the current value of the signal data over a predetermined period of time to compute a confidence range. The confidence range is compared to a first threshold and a second threshold. A determination is made that the signal is present in response to the confidence range being above the first threshold. A determination is made that the signal is not present in response to the confidence range being below the second threshold.
Abstract:
Calibration of a non-contact current sensor provides improved accuracy for measuring current conducted through a conductor such as an AC branch circuit wire. In a calibration mode, a predetermined DC current is injected through a conductor integrated in the non-contact current sensor. The magnitude of the magnetic field is measured using a sensing element of the non-contact current sensor. Then, when operating in measurement mode, a current conducted in a wire passing through the non-contact current sensor is determined by correcting the output of the non-contact current sensor using the result of the measurement made in the calibration mode.
Abstract:
A mechanism is provided for reusing importance sampling for efficient cell failure rate estimation of process variations and other design considerations. First, the mechanism performs a search across circuit parameters to determine failures with respect to a set of performance variables. For a single failure region, the initial search may be a uniform sampling of the parameter space. Mixture importance sampling (MIS) efficiently may estimate the single failure region. The mechanism then finds a center of gravity for each metric and finds importance samples. Then, for each new origin corresponding to a process variation or other design consideration, the mechanism finds a suitable projection and recomputes new importance sampling (IS) ratios.
Abstract:
Calibration of a non-contact current sensor provides improved accuracy for measuring current conducted through a conductor such as an AC branch circuit wire. In a calibration mode, a predetermined DC current is injected through a conductor integrated in the non-contact current sensor. The magnitude of the magnetic field is measured using a sensing element of the non-contact current sensor. Then, when operating in measurement mode, a current conducted in a wire passing through the non-contact current sensor is determined by correcting the output of the non-contact current sensor using the result of the measurement made in the calibration mode.
Abstract:
A method and system are provided for converting clinical criteria constraints for a target structure of radiation therapy into a second set of constraints. The method includes selecting, by a hardware processor, a plurality of clusters of voxels in the target structure based on pre-specified criteria. The method further includes assigning, by the hardware processor, each of the plurality of clusters of voxels a respective constraint that specifies one or more bounds on a radiation dose applied to each voxel in a corresponding one of the plurality of clusters of voxels. The method also includes storing, in a memory device, the respective constraint for each of the plurality of clusters of voxels.
Abstract:
A mechanism is provided for reusing importance sampling for efficient cell failure rate estimation of process variations and other design considerations. First, the mechanism performs a search across circuit parameters to determine failures with respect to a set of performance variables. For a single failure region, the initial search may be a uniform sampling of the parameter space. Mixture importance sampling (MIS) efficiently may estimate the single failure region. The mechanism then finds a center of gravity for each metric and finds importance samples. Then, for each new origin corresponding to a process variation or other design consideration, the mechanism finds a suitable projection and recomputes new importance sampling (IS) ratios.
Abstract:
A mechanism is provided for statistical determination of power circuit connectivity based on signal detection in a circuit. Signal data from the circuit gathered and a determination is made as to whether a signal of interest is present in the gathered signal data from the circuit using a statistical analysis of the gathered signal data. The statistical analysis comprises using a mean current value and statistical deviation of the current value of the signal data over a predetermined period of time to compute a confidence range. The confidence range is compared to a first threshold and a second threshold. A determination is made that the signal is present in response to the confidence range being above the first threshold. A determination is made that the signal is not present in response to the confidence range being below the second threshold.