Abstract:
An electrical inverter system including a first heat sink, a second heat sink and an electrical capacitor, stacked in that order. These three components can be fixed by a fixing means in such a way that they are not displaceable against each other and at least partially lie flat against each other. Furthermore, the system includes a semiconductor power module clamped between the heat sinks, and electrical contact elements electrically connecting the electrical capacitor and the semiconductor power module.
Abstract:
In accordance with an embodiment, a radio frequency (RF) switching circuit includes a plurality of series connected RF switch cells having a load path and a control node, and a switch driver coupled to the control node. Each of the plurality of series connected RF switch cells includes a switch transistor and a gate resistor having a first end coupled to a gate of the switch transistor and a second end coupled to the control node. The switch driver includes a variable output impedance that varies with a voltage of the control node.
Abstract:
In accordance with an embodiment, an adjustable capacitance circuit comprising a first branch comprising plurality of transistors having load paths coupled in series with a first capacitor. A method of operating the adjustable capacitance circuit includes programming a capacitance by selectively turning-on and turning-off ones of the plurality of transistors, wherein the load path of each transistor of the plurality of transistors is resistive when the transistor is on and is capacitive when the transistor is off.
Abstract:
A radio-frequency system includes an impedance tuning network having a plurality of selectable impedance states and a first port for coupling to a complex load impedance, a detector coupled to a second port of the impedance tuning network and configured to measure scalar values of reflection coefficients at the second port, and a controller configured to, for a first radio-frequency band, sequentially tune the impedance tuning network to at least three different impedance states in each of which the detector measures a scalar value of a corresponding reflection coefficient at the second port, and estimates a value of the complex load impedance based on the scalar values measured by the detector.
Abstract:
In accordance with an embodiment, a radio frequency (RF) switching circuit includes a plurality of series connected RF switch cells having a load path and a control node, and a switch driver coupled to the control node. Each of the plurality of series connected RF switch cells includes a switch transistor and a gate resistor having a first end coupled to a gate of the switch transistor and a second end coupled to the control node. The switch driver includes a variable output impedance that varies with a voltage of the control node.
Abstract:
An impedance matching network comprises a first and a second signal terminal and a reference potential terminal. The network further comprises a first shunt branch between the first signal terminal and the reference potential terminal, the first shunt branch comprising a variable inductive element and a first capacitive element. The impedance matching network also comprises a second shunt branch between the second signal terminal and the reference potential terminal and comprising a second capacitive element. A series branch between the first signal terminal and the second signal terminal comprises a third capacitive element. Optionally, the first, second, and/or third capacitive element may be implemented as a variable capacitive element. The variable capacitive element comprises a plurality of transistors, wherein a combination of off-capacitances Coff of the transistors provide an overall capacitance of the variable capacitive element as a function of at least two independent transistor control signals.