Abstract:
Highly efficient and rapid filtration-based concentration devices, systems and methods are disclosed with sample fluidic lines and a filter packaged in a disposable tip which concentrate biological particles that are suspended in liquid from a dilute feed suspension. A sample concentrate or retentate suspension is retained while eliminating the separated fluid in a separate flow stream. The concentrate is then dispensed from the disposable tip in a set volume of elution fluid. Suspended biological particles include such materials as proteins/toxins, viruses, DNA, and/or bacteria in the size range of approximately 0.001 micron to 20 microns diameter. Concentration of these particles is advantageous for detection of target particles in a dilute suspension, because concentrating them into a small volume makes them easier to detect. A single-use pipette tip includes fluid ports for aspirating the sample and connecting to a concentrating unit.
Abstract:
Devices and methods are described for using normal human breath to separately capture particles from inhaled and exhaled breath for analysis. This device can be constructed as a wearable device worn as a mask with separately removable filters on the inside and the outside of an efficient collection material.
Abstract:
Highly efficient and rapid filtration-based concentration devices, systems and methods are disclosed with sample fluidic lines and a filter packaged in a disposable tip which concentrate biological particles that are suspended in liquid from a dilute feed suspension. A sample concentrate or retentate suspension is retained while eliminating the separated fluid in a separate flow stream. The concentrate is then dispensed from the disposable tip in a set volume of elution fluid. Suspended biological particles include such materials as proteins/toxins, viruses, DNA, and/or bacteria in the size range of approximately 0.001 micron to 20 microns diameter. Concentration of these particles is advantageous for detection of target particles in a dilute suspension, because concentrating them into a small volume makes them easier to detect. All conduits by which the disposable tip attaches to the instrument are combined into a single connection point on the upper end of the tip.
Abstract:
The present subject disclosure discloses devices, systems, and methods related to collection and recovery of Aerosols and Bioaerosols for analysis. The system includes an omni-directional inlet assembly that is easily removed for decontamination and can be replaced with an already clean inlet assembly or with directional inlets or other tools for collection from animal breathing zones, air ducts, air nearing moving vehicles and other sampling scenarios. Further, the system includes other features that enable the device to be lower in cost than other similar systems while providing improved usability and performance.
Abstract:
Highly efficient and rapid filtration-based concentration devices, systems and methods are disclosed with sample fluidic lines and a filter packaged in a disposable tip which concentrate biological particles that are suspended in liquid from a dilute feed suspension. A sample concentrate or retentate suspension is retained while eliminating the separated fluid in a separate flow stream. The concentrate is then dispensed from the disposable tip in a set volume of elution fluid. Suspended biological particles include such materials as proteins/toxins, viruses, DNA, and/or bacteria in the size range of approximately 0.001 micron to 20 microns diameter. Concentration of these particles is advantageous for detection of target particles in a dilute suspension, because concentrating them into a small volume makes them easier to detect. A single-use pipette tip includes fluid ports for aspirating the sample and connecting to a concentrating unit.
Abstract:
Devices, systems and methods are disclosed which relate to using wet foam elution for removal of particles from swabs and wipes. This allow users to capture particles from surfaces and recover them by elution into small sample volumes for subsequent detection for human clinical, veterinary, food safety, pharmaceutical, outbreak investigations, forensics, biodefense and bioterrorism response, environmental monitoring, and other applications where collection of samples from surfaces and humans or animals is required. More specifically, the swabs or wipes are used to collect samples in the standard ways that commercially available swabs and wipes are in use today; from, for instance, food preparation surfaces in food plants, from production equipment in pharmaceutical facilities, for collection of dry powders during bioterrorism event response, and for collection of clinical samples such as nasal, throat, nasopharyngeal, and wounds.
Abstract:
A rapid one-pass liquid filtration system efficiently concentrates biological particles that are suspended in liquid from a dilute feed suspension. A sample concentrate or retentate suspension is retained while eliminating the separated fluid in a separate flow stream. Suspended biological particles include such materials as proteins/toxins, viruses, DNA, and/or bacteria in the size range of approximately 0.001 micron to 20 microns diameter. Concentration of these particles is advantageous for detection of target particles in a dilute suspension, because concentrating them into a small volume makes them easier to detect. Additional concentration stages may be added in “cascade” fashion, in order to concentrate particles below the size cut of each preceding stage remaining in the separated fluid in a concentrated sample suspension. This process can also be used to create a “band-pass” concentration for concentration of a particular target size particle within a narrow range.
Abstract:
A rapid one-pass liquid filtration system efficiently concentrates biological particles that are suspended in liquid from a dilute feed suspension. A sample concentrate or retentate suspension is retained while eliminating the separated fluid in a separate flow stream. Suspended biological particles include such materials as proteins/toxins, viruses, DNA, and/or bacteria in the size range of approximately 0.001 micron to 20 microns diameter. Concentration of these particles is advantageous for detection of target particles in a dilute suspension, because concentrating them into a small volume makes them easier to detect. Additional concentration stages may be added in “cascade” fashion, in order to concentrate particles below the size cut of each preceding stage remaining in the separated fluid in a concentrated sample suspension. This process can also be used to create a “band-pass” concentration for concentration of a particular target size particle within a narrow range.
Abstract:
Highly efficient and rapid filtration-based concentration devices, systems and methods are disclosed with sample fluidic lines and a filter packaged in a disposable tip which concentrate biological particles that are suspended in liquid from a dilute feed suspension. A sample concentrate or retentate suspension is retained while eliminating the separated fluid in a separate flow stream. The concentrate is then dispensed from the disposable tip in a set volume of elution fluid. Suspended biological particles include such materials as proteins/toxins, viruses, DNA, and/or bacteria in the size range of approximately 0.001 micron to 20 microns diameter. Concentration of these particles is advantageous for detection of target particles in a dilute suspension, because concentrating them into a small volume makes them easier to detect. All conduits by which the disposable tip attaches to the instrument are combined into a single connection point on the upper end of the tip.
Abstract:
Devices, systems and methods are disclosed which relate to using a wet foam elution method for removal of particles from a flat filter. Particles are captured from the atmosphere onto the flat filter. The flat filter is then placed into an extractor which passes a stream of wet foam through the flat filter. Expansion of the foam works to efficiently remove captured particles. The foam flows from the filter along with the captured particles into a sample container. Once in the sample container, the foam quickly breaks down leaving an analysis ready liquid sample.