Abstract:
A method and apparatus for initiating secure operations in a microprocessor system is described. In one embodiment, one initiating logical processor initiates the process by halting the execution of the other logical processors, and then loading initialization and secure virtual machine monitor software into memory. The initiating processor then loads the initialization software into secure memory for authentication and execution. The initialization software then authenticates and registers the secure virtual machine monitor software prior to secure system operations.
Abstract:
A method and apparatus for initiating secure operations in a microprocessor system is described. In one embodiment, one initiating logical processor initiates the process by halting the execution of the other logical processors, and then loading initialization and secure virtual machine monitor software into memory. The initiating processor then loads the initialization software into secure memory for authentication and execution. The initialization software then authenticates and registers the secure virtual machine monitor software prior to secure system operations.
Abstract:
In one embodiment, a processor can enforce a blacklist and validate, according to a multi-phase lockstep integrity protocol, a device coupled to the processor. Such enforcement may prevent the device from accessing one or more resources of a system prior to the validation. The blacklist may include a list of devices that have not been validated according to the multi-phase lockstep integrity protocol. Other embodiments are described and claimed.
Abstract:
In one embodiment, a domain controller includes a quarantine logic to quarantine unknown devices from unrestricted network access. The quarantine logic comprises a first quarantine point at a first layer of a multi-layer communication model. The domain controller also includes: a first logic to communicate with a domain name system (DNS) service to self-allocate and register a domain name with the DNS service, the domain name associated with a domain to be managed by the domain controller; a second logic to manage a group of devices of the domain; and a third logic to receive a provisioning request for a first device via an access point that comprises a second quarantine point at a second layer of the multi-level communication model. The second layer is a lower layer than the first layer, and the second quarantine point is more restrictive than the first. Other embodiments are described and claimed.
Abstract:
Technologies for device commissioning include a rendezvous server to receive, from a buyer device, a request to transfer ownership of a compute device to the buyer device. The rendezvous server verifies the provenance of the compute device based on a block chain and establishes a secure session with the compute device in response to verification of the provenance. The block chain identifies each transaction associated with ownership of the compute device.
Abstract:
In one embodiment, a domain controller includes: a quarantine logic to quarantine unknown devices from unrestricted network access, the quarantine logic comprising a first quarantine point at a first layer of a multi-layer communication model; a first logic to communicate with a domain name system (DNS) service to self-allocate and register a domain name with the DNS service, the domain name associated with a domain to be managed by the domain controller; a second logic to manage a group of devices of the domain; and a third logic to receive a provisioning request for a first device via an access point, wherein the access point comprises a second quarantine point at a second layer of the multi-level communication model. Other embodiments are described and claimed.
Abstract:
Cloud container resource binding and tasking using keys is generally described herein. An example device to bind and perform tasks using cloud-based resource may include a container to claim tasks to be performed and to select and bind to a resource based on capabilities of the resource and requirements of the tasks.
Abstract:
In one embodiment of the present invention, a method includes verifying a master processor of a system; validating a trusted agent with the master processor if the master processor is verified; and launching the trusted agent on a plurality of processors of the system if the trusted agent is validated. After execution of such a trusted agent, a secure kernel may then be launched, in certain embodiments. The system may be a multiprocessor server system having a partially or fully connected topology with arbitrary point-to-point interconnects, for example.
Abstract:
In one embodiment, a domain controller includes a quarantine logic to quarantine unknown devices from unrestricted network access. The quarantine logic comprises a first quarantine point at a first layer of a multi-layer communication model. The domain controller also includes: a first logic to communicate with a domain name system (DNS) service to self-allocate and register a domain name with the DNS service, the domain name associated with a domain to be managed by the domain controller; a second logic to manage a group of devices of the domain; and a third logic to receive a provisioning request for a first device via an access point that comprises a second quarantine point at a second layer of the multi-level communication model. The second layer is a lower layer than the first layer, and the second quarantine point is more restrictive than the first. Other embodiments are described and claimed.
Abstract:
Technologies for device commissioning include a rendezvous server to receive, from a buyer device, a request to transfer ownership of a compute device to the buyer device. The rendezvous server verifies the provenance of the compute device based on a block chain and establishes a secure session with the compute device in response to verification of the provenance. The block chain identifies each transaction associated with ownership of the compute device.