Abstract:
Technologies for sensor privacy on a computing device include receiving, by a sensor controller of the computing device, sensor data from a sensor of the computing device; determining a sensor mode for the sensor; and sending privacy data in place of the sensor data in response to a determination that the sensor mode for the sensor is set to a private mode. The technologies may also include receiving, by a security engine of the computing device, a sensor mode change command from a user of the computing device via a trusted input/output path of the computing device; and sending a mode command to the sensor controller to set the sensor mode of the sensor based on the sensor mode change command, wherein the sending the mode command comprises sending the mode command over a private bus established between the security engine and the sensor controller. Other embodiments are described herein.
Abstract:
A processor of an aspect includes operation mode check logic to determine whether to allow an attempted access to an operation mode and access type protected memory based on an operation mode that is to indicate whether the attempted access is by an on-die processor logic. Access type check logic is to determine whether to allow the attempted access to the operation mode and access type protected memory based on an access type of the attempted access to the operation mode and access type protected memory. Protection logic is coupled with the operation mode check logic and is coupled with the access type check logic. The protection logic is to deny the attempted access to the operation mode and access type protected memory if at least one of the operation mode check logic and the access type check logic determines not to allow the attempted access.
Abstract:
Technologies for sensor privacy on a computing device include receiving, by a sensor controller of the computing device, sensor data from a sensor of the computing device; determining a sensor mode for the sensor; and sending privacy data in place of the sensor data in response to a determination that the sensor mode for the sensor is set to a private mode. The technologies may also include receiving, by a security engine of the computing device, a sensor mode change command from a user of the computing device via a trusted input/output path of the computing device; and sending a mode command to the sensor controller to set the sensor mode of the sensor based on the sensor mode change command, wherein the sending the mode command comprises sending the mode command over a private bus established between the security engine and the sensor controller. Other embodiments are described herein.
Abstract:
In one embodiment, a processor can enforce a blacklist and validate, according to a multi-phase lockstep integrity protocol, a device coupled to the processor. Such enforcement may prevent the device from accessing one or more resources of a system prior to the validation. The blacklist may include a list of devices that have not been validated according to the multi-phase lockstep integrity protocol. Other embodiments are described and claimed.
Abstract:
Technology for a computing system is described. The computing system can include memory, a controller, and a security management module. The controller can receive a block erase command for erasing data stored in a block of memory. The controller can store information associated with the block erase command in a store, wherein the information includes a block address associated with the data to be erased based on the block erase command. The security management module can read block addresses from the store, update a block erase count array over a defined interval to include block addresses read from the store, compare the block erase count array to a defined threshold, identify block addresses for which the block erase count array is above the defined threshold, and deny subsequent block erase commands for the identified block addresses.
Abstract:
In accordance with some embodiments, a protected execution environment may be defined for a graphics processing unit. This framework not only protects the workloads from malware running on the graphics processing unit but also protects those workloads from malware running on the central processing unit. In addition, the trust framework may facilitate proof of secure execution by measuring the code and data structures used to execute the workload. If a part of the trusted computing base of this framework or protected execution environment is compromised, that part can be patched remotely and the patching can be proven remotely throughout attestation in some embodiments.
Abstract:
In one embodiment, a processor can enforce a blacklist and validate, according to a multi-phase lockstep integrity protocol, a device coupled to the processor. Such enforcement may prevent the device from accessing one or more resources of a system prior to the validation. The blacklist may include a list of devices that have not been validated according to the multi-phase lockstep integrity protocol. Other embodiments are described and claimed.
Abstract:
In one embodiment, a processor can enforce a blacklist and validate, according to a multi-phase lockstep integrity protocol, a device coupled to the processor. Such enforcement may prevent the device from accessing one or more resources of a system prior to the validation. The blacklist may include a list of devices that have not been validated according to the multi-phase lockstep integrity protocol. Other embodiments are described and claimed.