Abstract:
Provided are methods and systems for dispensing different chemicals used for high productivity combinatorial processing. A dispense panel may include multiple inlet lines for supplying different chemicals. Each inlet line is connected to its own three-way valve that either allows the supplied chemical to flow from the inlet line towards a dispense valve connected to a dispense manifold (during dispensing of the supplied chemical) or allows another chemical to flow from the dispense valve to a waste manifold (during priming of the dispense manifold with this other chemical). Specifically, during priming a chemical supplied from its inlet line and is passed through a corresponding three-way valve and is directed to its dispense valve and then into the dispense manifold. Other dispense valves and three-way valves of the dispense panel allow this chemical to flow out of the dispense manifold, thereby priming remaining parts of the panel.
Abstract:
A method for combinatorially processing a substrate is provided. The method includes providing a substrate disposed on a substrate support. The method further includes rigidly locking a top portion of a sleeve to a bottom portion of a process head of a combinatorial processing device, where the combinatorial processing device is operable to concurrently process different regions of the substrate differently. The method includes raising the substrate and the substrate support to contact a sealing surface of the sleeve with a surface of the substrate and combinatorially processing the different regions of the substrate.
Abstract:
The embodiments describe methods for controlling the particles generated when cleaning and drying a wafer in a spin rinse dryer (SRD) module. In some embodiments, the substrate surface is cooled by dispensing deionized (DI) water across the surface of the substrate, while the substrate rests on the SRD chuck. In addition, a method for controlling the particles generated when sleeves in a processing module or SRD contact a substrate surface during a clamping operation or when the sleeves are removed from the substrate surface is provided. A bottom edge or lip of the sleeves and/or the surface of the wafer contacting the sleeve is wetted during clamping/unclamping operations. Alternatively, the substrate may be wetted prior to clamping/unclamping operations.