摘要:
A method and system for cleaning a substrate in a multi-module cleaning assembly is provided. The method begins by receiving the substrate into the cleaning module. A cleaning chemistry, at a temperature elevated from an ambient temperature, is applied onto a top surface of the substrate. Concurrent with application of the cleaning chemistry, vapors are exhausted from the cleaning chemistry through a port located below a bottom surface of the substrate with the vapor exhaustion providing a negative pressure relative to a pressure external to the cleaning module. The application of the cleaning chemistry is terminated, followed by termination of the exhausting of the vapors. The substrate is dried after the flowing of inert gas is terminated.
摘要:
Provided are selector elements with active components comprising insulating matrices and mobile ions disposed within these insulating matrices. Also provided are methods of operating such selector elements. The insulating matrices and mobile ions may be formed from different combinations of materials. For example, the insulating matrix may comprise amorphous silicon or silicon oxide, while mobile ions may be silver ions. In another example, the active component comprises copper and germanium, selenium, or tellerium, e.g., Se61Cu39, Se67Cu33, or Se56Cu44. The active component may be a multilayered structure with a variable composition throughout the structure. For example, the concentration of mobile ions may be higher in a center of the structure, away from the electrode interfaces. In some embodiments, outer layers may be formed from Ge33Se24Cu47, while the middle layer may be formed from Ge47Se29Cu24.
摘要:
Embodiments provided herein describe systems and methods for processing substrates. A substrate having a first region and a second region is provided. A container is positioned proximate to the first region of the substrate. The container has an opening on an end thereof adjacent to the substrate. A processing liquid is dispensed into the container such that the processing liquid contacts the first region of the substrate through the opening. The gaseous pressure in a portion of the container devoid of the processing liquid is reduced. The reduction of the gaseous pressure prevents the processing liquid from flowing from the first region of the substrate to the second region of the substrate.
摘要:
Embodiments provided herein provide systems and methods for wet processing substrates with a rotating splash shield. The systems include a fluid dispenser configured to dispense a processing fluid. A substrate support configured to support and rotate a substrate is also included. The substrate support is disposed such that the processing fluid dispensed by the fluid dispenser flows onto the substrate. A splash shield is positioned on at least one side of the substrate support and is configured to rotate. The splash shield has an upper portion extending above an upper surface of the substrate and a lower portion extending below a lower surface of the substrate.
摘要:
A system and method for providing a plurality of diluted solutions are disclosed. Successive dilution operations are performed upon mixing vessels substantially simultaneously. Measured source volumes of a source solution are placed into the mixing vessels. First measured volumes of a liquid are added to the mixing vessels. Measured first waste volumes are dispensed from the mixing vessels. Second measured volumes of the liquid are added to the mixing vessels. Measured second waste volumes are dispensed from the mixing vessels. Third measured volumes of the liquid are added to the mixing vessels. Each vessel has an individual target dilution ratio. Measured volumes and number of dilution operations are individual to each of the mixing vessels.
摘要:
The embodiments describe methods for controlling the particles generated when cleaning and drying a wafer in a spin rinse dryer (SRD) module. In some embodiments, the substrate surface is cooled by dispensing deionized (DI) water across the surface of the substrate, while the substrate rests on the SRD chuck. In addition, a method for controlling the particles generated when sleeves in a processing module or SRD contact a substrate surface during a clamping operation or when the sleeves are removed from the substrate surface is provided. A bottom edge or lip of the sleeves and/or the surface of the wafer contacting the sleeve is wetted during clamping/unclamping operations. Alternatively, the substrate may be wetted prior to clamping/unclamping operations.
摘要:
A method for combinatorially processing a substrate is provided. The method includes providing a substrate disposed on a substrate support. The method further includes rigidly locking a top portion of a sleeve to a bottom portion of a process head of a combinatorial processing device, where the combinatorial processing device is operable to concurrently process different regions of the substrate differently. The method includes raising the substrate and the substrate support to contact a sealing surface of the sleeve with a surface of the substrate and combinatorially processing the different regions of the substrate.
摘要:
Provided are methods and systems for dispensing different chemicals used for high productivity combinatorial processing. A dispense panel may include multiple inlet lines for supplying different chemicals. Each inlet line is connected to its own three-way valve that either allows the supplied chemical to flow from the inlet line towards a dispense valve connected to a dispense manifold (during dispensing of the supplied chemical) or allows another chemical to flow from the dispense valve to a waste manifold (during priming of the dispense manifold with this other chemical). Specifically, during priming a chemical supplied from its inlet line and is passed through a corresponding three-way valve and is directed to its dispense valve and then into the dispense manifold. Other dispense valves and three-way valves of the dispense panel allow this chemical to flow out of the dispense manifold, thereby priming remaining parts of the panel.
摘要:
A system and method for providing a plurality of diluted solutions are disclosed. Successive dilution operations are performed upon mixing vessels substantially simultaneously. Measured source volumes of a source solution are placed into the mixing vessels. First measured volumes of a liquid are added to the mixing vessels. Measured first waste volumes are dispensed from the mixing vessels. Second measured volumes of the liquid are added to the mixing vessels. Measured second waste volumes are dispensed from the mixing vessels. Third measured volumes of the liquid are added to the mixing vessels. Each vessel has an individual target dilution ratio. Measured volumes and number of dilution operations are individual to each of the mixing vessels.
摘要:
Methods and apparatuses for combinatorial processing are disclosed. Apparatuses include a wet etch module (WEM) operable to combinatorially etch a substrate having at least two site-isolated regions. The WEM includes a dispense manifold operable to dispense fluids and a mixing vessel unit operable to mix fluids. The WEM further includes a reactor unit operable to receive fluids from the dispense manifold or the mixing vessel unit. The reactor unit can apply a combinatorial process on a substrate having at least two site-isolated regions within the WEM. In addition, a secondary containment unit, having a leak sensor therein, is coupled to the dispense manifold, mixing vessel unit, or reactor unit to receive fluid leaks within the system. When the leak sensor detects a fluid leak, a warning may be generated. Advantageously, the generated warning does not impede substrate processing within the WEM.