Abstract:
The embodiments describe methods for controlling the particles generated when cleaning and drying a wafer in a spin rinse dryer (SRD) module. In some embodiments, the substrate surface is cooled by dispensing deionized (DI) water across the surface of the substrate, while the substrate rests on the SRD chuck. In addition, a method for controlling the particles generated when sleeves in a processing module or SRD contact a substrate surface during a clamping operation or when the sleeves are removed from the substrate surface is provided. A bottom edge or lip of the sleeves and/or the surface of the wafer contacting the sleeve is wetted during clamping/unclamping operations. Alternatively, the substrate may be wetted prior to clamping/unclamping operations.
Abstract:
Methods for combinatorially processing semiconductor substrates are provided. The methods may involve receiving a substrate into a combinatorial processing chamber and sealing a plurality of flow cells against a surface of the substrate. The plurality of flow cells is enclosed within the combinatorial processing chamber to define an enclosed external environment for the plurality of flow cells. A pressure differential is created between a reaction area of the plurality of flow cells of the combinatorial processing chamber and the external environment, wherein each flow cells of the plurality of flow cells defines a site isolating region of die substrate. The regions the substrate are then combinatorially processed.
Abstract:
Methods of semiconductor processing are described. An experiment is designed for each process of a semiconductor substrate, which are implemented on respective multiple regions of the semiconductor substrate. A unique identifier is assigned to the semiconductor substrate. The respective design of experiment is implemented for each of the processes of the semiconductor substrate. Process criteria for each process is recorded, where the recording is associated with the assigned unique identifier. Process information is retrieved for each process, via its respective assigned unique identifier.
Abstract:
In some embodiments, the present invention discloses sealing mechanisms for generating site isolated regions on a substrate, allowing combinatorial processing without cross contamination between regions. The sealing mechanism can include a thin sharp edge ring for pressing on the substrate surface with small contact area. The small sealing area can concentrate the sealing force, generating higher contact pressure to guard against fluid leakage across the sealing surface, for example, eliminating fluid wicking at the seal interface through capillary action. The sealing mechanism can include multiple protrusions, which contacts the substrate leaving a small gap at the remaining portion of the sealing mechanism. The sealing mechanism can include minimal contact points with the substrate, which can significantly reduce the particle generation during processing. A pressure differential can be established across the sealing surface to prevent fluid leakage.
Abstract:
The embodiments describe methods for controlling the particles generated when cleaning and drying a wafer in a spin rinse dryer (SRD) module. In some embodiments, the substrate surface is cooled by dispensing deionized (DI) water across the surface of the substrate, while the substrate rests on the SRD chuck. In addition, a method for controlling the particles generated when sleeves in a processing module or SRD contact a substrate surface during a clamping operation or when the sleeves are removed from the substrate surface is provided. A bottom edge or lip of the sleeves and/or the surface of the wafer contacting the sleeve is wetted during clamping/unclamping operations. Alternatively, the substrate may be wetted prior to clamping/unclamping operations.
Abstract:
Methods for combinatorially processing semiconductor substrates are provided. The methods may involve receiving a substrate into a combinatorial processing chamber and sealing a plurality of flow cells against a surface of the substrate. The plurality of flow cells is enclosed within the combinatorial processing chamber to define an enclosed external environment for the plurality of flow cells. A pressure differential is created between a reaction area of the plurality of flow cells of the combinatorial processing chamber and the external environment, wherein each flow cells of the plurality of flow cells defines a site isolating region of the substrate. The regions the substrate are then combinatorially processed.