Abstract:
A computer-implemented method of analyzing a sample task trajectory including obtaining, with one or more computers, position information of an instrument in the sample task trajectory, obtaining, with the one or more computers, pose information of the instrument in the sample task trajectory, comparing, with the one or more computers, the position information and the pose information for the sample task trajectory with reference position information and reference pose information of the instrument for a reference task trajectory, determining, with the one or more computers, a skill assessment for the sample task trajectory based on the comparison, and outputting, with the one or more computers, the determined skill assessment for the sample task trajectory.
Abstract:
Systems and methods for endoscopic operations are described. For example, the disclosure provides mechanisms for sensing and controlling a field of view of an endoscope by determining a pose of the field of view using a first location and a second location, and controlling the pose of the field of view by moving at least one of: the first portion and the second portion. The first location is of a first portion of the endoscope and the second location is of a second portion of the endoscope. The endoscope comprises a flexible portion disposed between the first portion and the second portion. The first and second locations are defined by a configuration, relative to the endoscope, of an endoscope support and a cannula. The endoscope support configured to support the endoscope. A shaft of the endoscope is configured to extend through the cannula.
Abstract:
In a minimally invasive surgical system, a hand tracking system tracks a location of a sensor element mounted on part of a human hand. A system control parameter is generated based on the location of the part of the human hand. Operation of the minimally invasive surgical system is controlled using the system control parameter. Thus, the minimally invasive surgical system includes a hand tracking system. The hand tracking system tracks a location of part of a human hand. A controller coupled to the hand tracking system converts the location to a system control parameter, and injects into the minimally invasive surgical system a command based on the system control parameter.
Abstract:
In a minimally invasive surgical system, a hand tracking system tracks a location of a sensor element mounted on part of a human hand. A system control parameter is generated based on the location of the part of the human hand. Operation of the minimally invasive surgical system is controlled using the system control parameter. Thus, the minimally invasive surgical system includes a hand tracking system. The hand tracking system tracks a location of part of a human hand. A controller coupled to the hand tracking system converts the location to a system control parameter, and injects into the minimally invasive surgical system a command based on the system control parameter.