Abstract:
A surgical apparatus comprises an instrument shaft having a proximal end and a distal end, an end effector coupled to the distal end of the shaft, and a sheath disposed on an external surface of the instrument shaft. The sheath has a first section made of ePTFE and a second section made of a second material, wherein the second section provides a friction seal with the shaft, and wherein the ePTFE is gas-permeable.
Abstract:
The present invention is directed to an articulate minimally invasive surgical endoscope with a flexible wrist having at least one degree of freedom. When used with a surgical robot having a plurality of robot arms, the endoscope can be used with any of the plurality of arms thereby allowing the use a universal arm design. The endoscope in accordance to the present invention is made more intuitive a to a user by attaching a reference frame used for controlling the at least one degree of freedom motion to the flexible wrist for wrist motion associated with the at least one degree of freedom. The endoscope in accordance to the present invention attenuates undesirable motion at its back/proximal end by acquiring the image of the object in association with the at least one degree of freedom based on a reference frame rotating around a point of rotation located proximal to the flexible wrist.
Abstract:
A medical instrument includes cable pairs respectively wound around input spindles and connected to actuate degrees of freedom of an instrument shaft structure. The cables may connect so that rotating the input spindles actuates corresponding degrees of freedom. First pulleys in the instrument may receive first cables from the input spindles and redirect the first cables toward the instrument shaft, and second pulleys may receive second cables from the input spindles and redirect the second cables toward the instrument shaft. In one configuration, the first and second pulleys are respectively mounted at first and second levels, and the second pulleys redirect the second cables through the first level. Additionally or alternatively, one level of cables may cross while the other level of cables does not.
Abstract:
A medical instrument includes an instrument shaft with exit holes near a distal end of the shaft, a tool coupled to the distal end of the shaft, and a backend. The backend may include a mechanism that manipulates a drive element that extends through the shaft and couples to the tool, a fluid inlet, and a fluid channel assembly providing fluid communication between the fluid inlet and the proximal end of the shaft. Cleaning fluid is directed into the fluid inlet, through the fluid channel assembly, and into the shaft. A chassis or other structural piece of the backend may form part of the fluid channel assembly.
Abstract:
In accordance with at least one exemplary embodiment, a surgical instrument comprises a shaft comprising a distal end a proximal end, a wall extending from the distal end to the proximal end and having an exterior surface and an interior surface. At least a first portion of the shaft may include openings that penetrate the interior and exterior surfaces of the wall and provide flow communication from an exterior of the shaft to an interior of the shaft. At least one transverse cross-sectional plane and at least one longitudinal cross-section plane through the portion of the shaft including openings may each intersect multiple openings that penetrate the interior and exterior surfaces of the wall. The surgical instrument may include a manifold in flow communication with an interior of the shaft. The surgical instrument may include a flexible sleeve located inside the interior of the shaft.
Abstract:
A method using a sheathed surgical apparatus includes equalizing a pressure differential between a surgical insufflation gas pressure and an initial pressure lower than the insufflation gas pressure. The insufflation gas pressure is external to a portion of a surgical apparatus upon which a sheath is disposed, and the initial pressure is within the surgical apparatus. The equalizing of the pressure differential occurs via permeation of insufflation gas through the sheath.