Abstract:
A system comprises an elongate flexible catheter including a lumen extending along at least a portion of a longitudinal axis of the elongate flexible catheter and terminating at a distal opening of the elongate flexible catheter. The system further comprises a circuit assembly including a plurality of conductors wrapped in a spiral configuration around the elongate flexible catheter. At least one of the plurality of conductors of the circuit assembly is coupled to an electrode. The system further comprises at least one processor configured to determine a location of the elongate flexible catheter based on at least one signal received from the electrode.
Abstract:
A method of inhibiting flow of a purging fluid from a device comprises positioning an imaging hood in proximity to a tissue region to be visualized. The imaging hood includes a distal membrane which defines a main aperture. The imaging hood and the distal membrane define an open area. The method also comprises introducing the purging fluid into a proximal portion of the open area. The proximal portion is bounded by a proximal membrane including a plurality of apertures. The method also comprises pressurizing the proximal membrane with the purging fluid to a partially extended state in which the purging fluid flows through the plurality of apertures and through the main aperture. The method also comprises pressurizing the proximal membrane with the purging fluid to a blocking extended state in which the proximal membrane obstructs the main aperture to block the flow of the purging fluid through the main aperture.
Abstract:
A medical manipulation assembly comprises a sheath steerable in response to rotational movement of a sheath steering mechanism. The assembly also comprises a catheter extendable through the sheath. The catheter is steerable in response to rotational movement of a catheter steering mechanism. The sheath and catheter are independently steerable. The assembly also comprises a set of control wires. At least one of the sheath or the catheter includes a plurality of lumens with at least two of the plurality of lumens each sized for passage of one of the control wires of the set of control wires. The steerable catheter includes a working channel sized to receive a visualization instrument therethrough.
Abstract:
A system for visualizing a tissue region of interest comprises a deployment catheter defining a lumen and a hood coupled to and extending distally from the deployment catheter. The hood has a low-profile configuration within a delivery sheath and a deployed configuration when extended distally of the delivery sheath. The hood in the deployed configuration defines an open area in fluid communication with the lumen. A distal portion of the deployment catheter extends into the open area. The system also comprises an imaging element coupled to an imager support member. When the hood is in the deployed configuration, the imaging element is configured to extend distally of the distal portion of the deployment catheter while the imager support member extends within the deployment catheter.
Abstract:
A method of inhibiting flow of a purging fluid from a device comprises positioning an imaging hood in proximity to a tissue region to be visualized. The imaging hood includes a distal membrane which defines a main aperture. The imaging hood and the distal membrane define an open area. The method also comprises introducing the purging fluid into a proximal portion of the open area. The proximal portion is bounded by a proximal membrane including a plurality of apertures. The method also comprises pressurizing the proximal membrane with the purging fluid to a partially extended state in which the purging fluid flows through the plurality of apertures and through the main aperture. The method also comprises pressurizing the proximal membrane with the purging fluid to a blocking extended state in which the proximal membrane obstructs the main aperture to block the flow of the purging fluid through the main aperture.
Abstract:
A method of inhibiting a flow of a purging fluid from a tissue visualization device comprises positioning an imaging hood attached to a distal end of a flexible elongate shaft in proximity to a tissue region to be visualized The method also comprises introducing the purging fluid into an inflation member suspended within an open area of the imaging hood. The inflation member includes at least one aperture on a proximal portion of the inflation member. The method also comprises inflating the inflation member to a partially inflated state in which the inflation member is circumferentially separated from an inner surface of the hood to form an annular flow path for the purging fluid from the at least one aperture, between the inner surface of the hood and the inflation member, and into fluid communication with an environment external to the hood. The method also comprising inflating the inflation member to a blocking inflated state in which the inflation member expands into contact with the imaging hood to block the flow from the at least one aperture to the annular flow path.
Abstract:
A tissue treatment assembly comprising an elongate flexible energy delivery device extending along a longitudinal axis and terminating at a distal opening and a circuit assembly including a plurality of conductors wrapped in a spiral configuration around the elongate flexible energy delivery device.
Abstract:
Electrode placement and connection systems are described which allow for the electrical connection and maintenance of one or more electrodes positioned on a substrate which is subjected to a variety of mechanical stresses. Electrodes may also be formed on flexible circuit assemblies integrated within or along the hood. The circuit assemblies may also provide structural support to the hood during delivery and/or deployment. Such a system may include an imaging hood having an aperture through which transparent fluid is flowed and one or more electrodes positioned along or about the hood. As the hood is configured between a low-profile and opened configuration, these electrodes may remain electrically coupled despite the mechanical stresses subjected to the electrodes and the connections thereto.