Abstract:
Provided is a high-strength cold-rolled steel sheet has a chemical composition containing, by mass %, C: 0.10% or more and 0.6% or less, Si: 1.0% or more and 3.0% or less, Mn: more than 2.5% and 10.0% or less, P: 0.05% or less, S: 0.02% or less, Al: 0.01% or more and 1.5% or less, N: 0.005% or less, Cu: 0.05% or more and 0.50% or less, and the balance being Fe and inevitable impurities, and a tensile strength of 1180 MPa or more, in which a steel sheet surface coverage of oxides mainly containing Si is 1% or less, a steel sheet surface coverage of iron-based oxides is 40% or less, CuS/CuB is 4.0 or less, and a tensile strength is 1180 MPa or more, where CuS denotes a Cu concentration in a surface layer of a steel sheet and CUB denotes a Cu concentration in base steel.
Abstract:
Provided are a high-yield-ratio high-strength galvanized steel sheet and a method for manufacturing thereof. The high-yield-ratio high-strength galvanized steel sheet has a steel sheet having a specified chemical composition and a metallographic structure including, in terms of area ratio, in terms of area ratio, 15% or less of ferrite, 20% or more and 50% or less of martensite, and bainite and tempered martensite in a total amount of 30% or more, and a galvanized layer formed on the steel sheet having a coating weight of 20 g/m2 to 120 g/m2 per side, in which a yield strength ratio is 65% or more, a tensile strength is 950 MPa or more, and Mn oxides are contained in the galvanized layer in an amount of 0.015 g/m2 to 0.050 g/m2.
Abstract:
In a method for prevention of yellowing on a surface of a steel sheet subjected to re-pickling, washing with water and drying after a surface of a continuously annealed steel sheet is pickled to remove Si-containing oxide layer from a surface layer of the steel sheet, the surface of the steel sheet is held at a wet state between the pickling and the re-pickling and between the re-pickling and the washing, and more preferably the washing is carried out with water having an iron ion concentration decreased to not more than 20 g/L, whereby the yellowing on the surface of the steel sheet after the pickling is prevented. Thus, cold rolled steel sheets being excellent in not only the appearance quality but also the phosphatability and corrosion resistance after painting are manufactured stably.
Abstract:
Provided are a high-yield-ratio high-strength galvanized steel sheet and a method for manufacturing thereof. The high-yield-ratio high-strength galvanized steel sheet has a steel sheet having a specified chemical composition and a metallographic structure including, in terms of area ratio, in terms of area ratio, 15% or less of ferrite, 20% or more and 50% or less of martensite, and bainite and tempered martensite in a total amount of 30% or more, and a galvanized layer formed on the steel sheet having a coating weight of 20 g/m2 to 120 g/m2 per side, in which a yield strength ratio is 65% or more, a tensile strength is 950 MPa or more, and Mn oxides are contained in the galvanized layer in an amount of 0.015 g/m2 to 0.050 g/m2.
Abstract:
A high-strength cold-rolled steel sheet has a composition that contains, in terms of mass %, C: 0.10% or more and 0.50% or less, Si: 1.0% or more and 3.0% or less, Mn: 1.0% or more and 2.5% or less, P: 0.05% or less, S: 0.02% or less, Al: 0.01% or more and 1.5% or less, N: 0.005% or less, Cu: 0.05% or more and 0.50% or less, and the balance being Fe and unavoidable impurities, wherein a proportion of a steel sheet surface covered with oxides mainly composed of Si is 1% or less, a proportion of the steel sheet surface covered with Fe oxides is 40% or less, CuS/CuB is 4.0 or less, and a tensile strength is 1180 MPa or more, when CuS denotes the Cu content in a steel sheet surface layer and CuB denotes the Cu content in a base material.
Abstract:
A Si-containing high-strength cold rolled steel sheet has a chemical composition comprising C: 0.02˜0.3 mass %, Si: 0.8˜2.0 mass %, Mn: 1.0˜5.0 mass % and the remainder being Fe and inevitable impurities with a ratio of Si content to Mn content (Si/Mn) exceeding 0.4, and has a tensile strength TS of not less than 780 MPa, wherein a metallic structure of the steel sheet surface contains polygonal ferrite and/or bainitic ferrite having a Si concentration of not more than 3.0 mass % and a grain size of not more than 10 μm and does not have a Si-containing oxide layer on the steel sheet surface.
Abstract:
A method for producing a hot-pressed member includes heating a coated steel sheet, which includes, on a surface thereof, a Zn—Ni alloy coating layer containing 10% by mass or more and less than 13% by mass of Ni at a coating weight of over 50 g/m2 per side of the steel sheet, in a temperature region of an Ac3 transformation point to 1200° C. at an average heating rate of 12° C./second or more, and then hot-pressing the steel sheet.
Abstract:
A hot-pressed member includes a steel sheet, a Ni-diffusion region present in a surface layer of the steel sheet, and an intermetallic compound layer and a ZnO layer which are provided in order on the Ni-diffusion region, the intermetallic compound layer corresponding to a γ phase present in a phase equilibrium diagram of a Zn—Ni alloy, wherein a spontaneous immersion potential indicated in a 0.5 M NaCl aqueous air-saturated solution at 25° C.±5° C. is −600 to −360 mV based on a standard hydrogen electrode.
Abstract:
Provided is a novel method for producing a laminate that serves as an electron transport layer and an optically transparent electrode layer of a perovskite solar cell having, in the following order, an optically transparent electrode layer, an electron transport layer, a perovskite crystal layer, a hole transport layer, and a current collecting layer. The method involves forming a titanium oxide layer that serves as the electron transport layer on a member that serves as the optically transparent electrode layer by utilizing said member for cathode polarization in a treatment liquid containing a Ti component.
Abstract:
Provided is a laminate with which an organic thin-film solar cell having excellent output characteristics, even in an LED light irradiation environment, can be obtained. A titanium oxide layer that serves as an electron transport layer and is positioned on a member that serves as an optically transparent electrode layer has a thickness of 1.0 nm to 60.0 nm, inclusive, and satisfies condition 1 or condition 2. Condition 1: The titanium oxide layer contains an indium metal and an indium oxide, wherein, if the content of elemental titanium is denoted as Ti, the content of the indium metal is denoted as InM, and the content of the indium oxide is denoted as InOx, the atomic ratio (InM/Ti) is 0.10 to 0.25, inclusive, and the atomic ratio (InOx/Ti) is 0.50 to 10.00, inclusive. Condition 2: The titanium oxide layer contains a tin metal and a tin oxide, wherein, if the content of the elemental titanium is denoted as Ti, the content of the tin metal is denoted as SnM, and the content of the tin oxide is denoted as SnOx, the atomic ratio (SnM/Ti) is 0.05 to 0.30, inclusive, and the atomic ratio (SnOx/Ti) is 0.50 to 10.00, inclusive.