Abstract:
The present invention provides expanded polylactic acid resin beads, in which each bead is composed of a core layer that is in an expanded state and contains a crystalline polylactic acid resin, and a coating layer that coats the core layer and contains a mixed resin of an amorphous polylactic acid resin and a crystalline polyolefin resin, wherein the content of the crystalline polyolefin resin in the coating layer is 3% by weight or more and less than 50% by weight. The expanded polylactic acid resin beads can stably produce a molded article of expanded polylactic acid resin beads excellent in fusibility of the expanded polylactic acid resin beads therein and also excellent in solvent resistance.
Abstract:
A method for producing cross-linked polyethylene resin expanded beads, including dispersing polyethylene resin particles containing a halogen-containing flame retardant in a dispersing medium in an autoclave, impregnating the dispersed resin particles with an organic peroxide and cross-linking the polyethylene resin therewith at a specific temperature range determined by the melting point of the polyethylene resin and by melting point or glass transition temperature of the flame retardant, impregnating the dispersed resin particles with a blowing agent, and then foaming and expanding the resulting cross-linked polyethylene-based resin particles.
Abstract:
The present invention relates to an in-mold expanded beads molded article of expanded beads of an olefin thermoplastic elastomer, a cushion for shoe sole, and a method of producing expanded beads provided with through-holes and composed of a block copolymer of a polyethylene block and an ethylene/α-olefin copolymer block, and with respect to the in-mold expanded beads molded article of expanded beads of an olefin thermoplastic elastomer, a voidage of the expanded beads molded article is 5 to 40%; a density of the expanded beads molded article is 30 to 150 g/L; and a flexural modulus of the olefin thermoplastic elastomer that constitutes the expanded beads molded article is 10 to 100 MPa.
Abstract:
The present invention relates to expanded thermoplastic urethane-based elastomer beads including, as a base material, a thermoplastic urethane-based elastomer having a melting point Tm of 175° C. or higher and such a glass transition temperature Tg that a difference (Tm-Tg) between the melting point Tm and the glass transition temperature Tg is 200° C. or more.
Abstract:
An in-mold molded article of expanded thermoplastic polyurethane beads containing a colorant, wherein when an average surface cell wall thickness of the in-mold molded article is 20 μm or more, the expanded TPU beads molded article is high in uniformity of color and good in color developing properties. Expanded thermoplastic polyurethane beads containing a colorant, wherein when an apparent density of the expanded beads is 80 to 300 kg/m3, an average cell diameter of the expanded beads is 100 to 400 μm, and an average surface cell wall thickness of the expanded beads is 15 μm or more, a molded article resulting from in-mold molding of the expanded beads is suppressed in color unevenness and has high uniformity of color.
Abstract:
Provided are spherical expanded beads obtained through expansion of thermoplastic polyurethane beads, wherein a bead mass of the expanded beads is 3 to 12 mg, and a ratio of a long diameter to a short diameter of the expanded bead (long diameter/short diameter) is 1.5 or less; an apparent density of the expanded beads is 80 to 300 kg/m3; an average cell diameter Da of the expanded beads is 80 to 300 μm; and a closed cell ratio of the expanded beads is 80% or more.
Abstract:
The present invention is concerned with expanded beads of thermoplastic polyurethane in which a water-soluble anionic surfactant is attached at 50 mg/m2 to 1,000 mg/m2 onto the surfaces of expanded beads of thermoplastic polyurethane having a dispersant attached thereto; and a method for producing an expanded beads molded article, including filling the expanded beads of thermoplastic polyurethane in a mold for molding and heating with a water vapor to mutually fuse the expanded beads with each other. The present invention provides expanded beads from which an expanded TPU beads molded article having excellent tensile strength and a method for producing an expanded TPU beads molded article.
Abstract:
Provided is an expanded propylene resin bead including a core layer in a foamed state, which includes a propylene-based resin composition (a) satisfying the following (i) and (ii); and a cover layer which includes an olefin-based resin (b) satisfying the following (iii) or (iv): (i) the propylene-based resin composition (a) is a mixture of 65% by weight to 98% by weight of a propylene-based resin (a1) having a melting point of 145° C. to 165° C. and a flexural modulus of 1,200 MPa or more and 35% by weight to 2% by weight of a propylene-based resin (a2) having a melting point of 100° C. to 145° C. and a flexural modulus of 800 MPa to 1,200 MPa; (ii) a difference in a melting point between the resin (a1) and the resin (a2) is 5° C. to 25° C.; (iii) the olefin-based resin (b) is a crystalline olefin-based resin having a melting point (TmB) that is lower than a melting point (TmA) of the composition (a) and being in a relation of (0° C.
Abstract:
An electrostatic dissipating molded article having a surface resistivity of 1×105 to 1×1010Ω and obtained by in-mold molding of multi-layered polyolefin-based resin expanded beads each having an polyolefin-based resin expanded core layer and a polyolefin-based resin cover layer which covers the polyolefin-based resin expanded core layer and which is formed from a polyolefin-based resin (A), a polymeric antistatic agent (B) of a block copolymer of a polyether block and a polyolefin block, and an electrically conductive carbon black (C), the components (A) to (C) being present in a specific proportion.
Abstract:
An expanded beads molded article containing a block copolymer of a polyethylene block and an ethylene-α-olefin copolymer block and having a density of 150 kg/m3 or more and 500 kg/m3 or less and a tensile strength of 0.5 MPa or more.