Abstract:
A cross-linkable polymer including 1,1′-binaphthyl repeating units linked through 6,6′-arylene groups, a cross-linked material comprising the cross-linkable polymer, an organic light emitting device including the cross-linked material, and a method of preparing the organic light emitting device are each disclosed.
Abstract:
Disclosed is a mobile network system based on ad hoc on-demand distance vector (AODV) routing algorithm, including: a destination node: a source node for transmitting a data packet to the destination node by following a communication path; and a mobile node for receiving the data packet from a plurality of intermediate nodes located on the communication path, checking hop count numbers for the plurality of intermediate nodes, and establishing a communication path with a first node having a least number of hops and a second node having a most number of hops. Therefore, an optimum changeable communication path is searched in consideration of mobility of the mobile node. In result, communication speed is increased and the lifespan of the network is extended.
Abstract:
A communication system having a source node, at least one mobile node, and a router that transmits data packets transmitted from the source node to a corresponding one of the at least one mobile node and multiplexes response signals to the data packets received from the corresponding one of the at least one mobile node to transmit the multiplexed response signals to the source node. The communication system includes: a link monitoring unit which calculates a capacity of a wireless link between the router and the corresponding one of the at least one mobile node; and a congestion control and adjustment unit which adjusts window field values in the response signals according to the calculated capacity. The router transmits the response signals, the response signals including the adjusted window field values to the source node, and the source node sequentially transmits the data packets on the basis of the adjusted window field values.
Abstract:
A communication system having a source node, at least one mobile node, and a router that transmits data packets transmitted from the source node to a corresponding one of the at least one mobile node and multiplexes response signals to the data packets received from the corresponding one of the at least one mobile node to transmit the multiplexed response signals to the source node. The communication system includes: a link monitoring unit which calculates a capacity of a wireless link between the router and the corresponding one of the at least one mobile node; and a congestion control and adjustment unit which adjusts window field values in the response signals according to the calculated capacity. The router transmits the response signals, the response signals including the adjusted window field values to the source node, and the source node sequentially transmits the data packets on the basis of the adjusted window field values.
Abstract:
A blue electroluminescent compound and an organic electroluminescent device using the blue electroluminescent compound, which includes a 9,10-diphenyl anthracene unit in its backbone and has alkoxy groups and substituted or unsubstituted amino group introduced to the 2 and 5 positions on the phenyl group in the diphenyl anthracene unit.
Abstract:
A label sheet which is formed by stacking an adhesive layer, an inorganic reinforcement layer, a polyester film layer and a bar-code print layer on a releasable substrate layer in sequence is provided. According to the present invention, a glass frit is added to the adhesive layer of the label sheet, and not to the bar-code print layer, so that problems caused from the glass frit in the bar-code print layer can be eliminated and the adhesive layer itself can fix the shape of the label sheet. In addition, thermal stability at high temperatures is improved by the characteristics of individual layers constituting the label sheet, so that the bar-code is not damaged by a thermal process.
Abstract:
A transistor includes a device portion and a collector layer. The device portion is in a first side of a semiconductor substrate, and includes a gate and an emitter. The collector layer is on a second side of the semiconductor substrate, which is opposite to the first side. The collector layer is an impurity-doped epitaxial layer and has a doping profile with a non-normal distribution.
Abstract:
A method for relaying received data by a relay node in a sensor network that includes a sink node, a source node for collecting and transmitting data requested by the sink node, and the relay node for relaying the data transmitted from the source node to the sink node. The relay node determines whether the source node that transmits the data is a previously identified source node, stores the data in a buffer and forwards the data to a neighbor node when the source node transmitting the data is the previously identified source node according to the determination. The data is managed based on the relay node having the buffer, rather than the source node and the sink node as in the related art. Further, the data error can be promptly handled.
Abstract:
A queue management method of an access network device includes receiving a packet, determining feasibility of a packet transmission within a delivery deadline allowed from a destination if the received packet is for real-time transmission, storing the packet in the transmission queue and transmitting the packet in sequential order of the storage when the packet transmission within the delivery deadline is feasible, and dropping the packet instead of storing the packet in the transmission queue when the packet transmission is determined infeasible. Accordingly, resources required for the packet transmission are saved.
Abstract:
A method for establishing a path between nodes in a wireless network system. A source node broadcasts a route request (RREQ) packet for a destination node. A mobile node between the source node and the destination node, upon receiving the RREQ packet, appends a redundancy degree with respect to an adjacent node to the RREQ packet and broadcasts the RREQ packet. The destination node selects an optimal path by checking the redundancy degree received along each path when the RREQ packet is received along multiple paths, and the destination node establishes an optimal path to the source node by transmitting a route reply (RREP) packet along the optimal path. Accordingly, the path is established suitable for the quality of service of data to be transmitted and a lost path is promptly recoverable by reference to information stored at each mobile node identifying redundant paths available to the mobile node.