Abstract:
A releasing and post-releasing method for making a micromirror device and a micromirror array device are disclosed herein. The releasing method removes the sacrificial materials in the micromirror and micromirror array so as to enabling movements of the movable elements in the micromirror and micromirror array device. The post-releasing method is applied to improve the performance and quality of the released micromirrors and micromirror array devices.
Abstract:
The disclosure provides an apparatus for reducing speckle in a projection visual display (PVD) system, a method of reducing visible speckle in a PVD system and a PVD system incorporating the method or apparatus. In one embodiment, the apparatus includes a diffuser interposable in an optical path of a PVD system and a diffuser actuator having a single drive axis configured to cause the diffuser to travel in a Lissajous curve at least partially transverse to the optical path.
Abstract:
The present invention provides a spacer assembly which is tailored to provide a secondary electron emission coefficient of approximately 1 for the spacer assembly when the spacer assembly is subjected to flat panel display operating voltages. The present invention further provides a spacer assembly which accomplishes the above achievement and which does not degrade severely when subjected to electron bombardment. The present invention further provides a spacer assembly which accomplishes both of the above-listed achievements and which does not significantly contribute to contamination of the vacuum environment of the flat panel display or be susceptible to contamination that may evolve within the tube. Specifically, in one embodiment, the present invention is comprised of a spacer structure which has a specific secondary electron emission coefficient function associated therewith. The material comprising the spacer structure is tailored to provide a secondary electron emission coefficient of approximately 1 for the spacer assembly when the spacer assembly is subjected to flat panel display operating voltages.
Abstract:
A light-emitting device (42, 68, 80, 90, or 100) suitable for a flat-panel CRT display contains a plate (54), a light-emissive region (56), a light-blocking region (58), and a light-reflective layer (60 or 70). The light-emitting device achieves one or more of the following characteristics by suitably implementing the light-reflective layer or/and providing one or more layers (72, 82, 92, and 100) along the light-reflective layer: (a) reduced electron energy loss as electrons pass through the light-reflective layer, (b) gettering along the light-reflective layer, (c) reduced secondary electron emission along the light-reflective layer, (d) reduced electron backscattering along the light-reflective layer, and (e) reduced chemical reactivity along the light-reflective layer.
Abstract:
A voltage ratio regulator circuit for a spacer electrode of a flat panel display screen. Within one implementation of a field emission display (FED) device, thin spacer walls are inserted between a high voltage (Vh) faceplate and a backplate to secure these structures as a vacuum is formed between. A phosphor layer on the faceplate receives electrons selectively emitted from discrete electron emitting areas along the backplate (cathode) thereby forming images on the faceplate. The faceplate warms relative to the backplate, as a result of energy released by the phosphor layer, thereby generating a temperature gradient along the spacer walls. The top portion of each spacer wall becomes more conductive with increased temperature and acts to attract electrons that are emitted toward the faceplate. To counter this attraction, a spacer electrode is placed along each spacer wall at a height, d, above the backplate and maintained at a voltage, Ve. Electrodes of all of the spacer walls are coupled together. The spacer electrode at Ve and the high voltage supply at Vh are both coupled to a voltage ratio regulator circuit which maintains the ratio (Ve/Vh) using voltage dividers, an operational amplifier and other circuitry. The voltage ratio regulator compensates for variations in voltage supply performance. The time constants of the voltage ratio regular circuit is tuned to be near or slightly faster than the time constant of the inherent resistance and capacitance of the spacer wall. The invention can also correct for other sources of the voltage error on the spacer walls. The invention improves the electron path accuracy for pixels located near spacer walls.
Abstract:
The invention provides an apparatus for reducing speckle in a projection visual display (PVD) system, a method of reducing visible speckle in a PVD system and a PVD system incorporating the method or apparatus. In one embodiment, the apparatus includes a diffuser interposable in an optical path of a PVD system and a diffuser actuator having a single drive axis configured to cause the diffuser to travel in a lissajous curve at least partially transverse to the optical path.
Abstract:
Methods for compensating for brightness variations in a field emission device. In one embodiment, a method and system are described for measuring the relative brightness of rows of a field emission display (FED) device, storing information representing the measured brightness into a correction table and using the correction table to provide uniform row brightness in the display by adjusting row voltages and/or row on-time periods. A special measurement process is described for providing accurate current measurements on the rows. This embodiment compensates for brightness variations of the rows, e.g., for rows near the spacer walls. In another embodiment, a periodic signal, e.g., a high frequency noise signal, is added to the row on-time pulse in order to camouflage brightness variations in the rows near the spacer walls. In another embodiment, the area under the row on-time pulse is adjusted to provide row-by-row brightness compensation based on correction values stored in a memory resident correction table. In another embodiment, the brightness of each row is measured and compiled into a data profile for the FED. The data profile is used to control cathode burn-in processes so that brightness variations are corrected by physically altering the characteristics of the emitters of the rows.
Abstract:
Methods for compensating for brightness variations in a field emission device. In one embodiment, a method and system are described for measuring the relative brightness of rows of a field emission display (FED) device, storing information representing the measured brightness into a correction table and using the correction table to provide uniform row brightness in the display by adjusting row voltages and/or row on-time periods. A special measurement process is described for providing accurate current measurements on the rows. This embodiment compensates for brightness variations of the rows, e.g., for rows near the spacer walls. In another embodiment, a periodic signal, e.g., a high frequency noise signal, is added to the row on-time pulse in order to camouflage brightness variations in the rows near the spacer walls. In another embodiment, the area under the row on-time pulse is adjusted to provide row-by-row brightness compensation based on correction values stored in a memory resident correction table. In another embodiment, the brightness of each row is measured and compiled into a data profile for the FED. The data profile is used to control cathode burn-in processes so that brightness variations are corrected by physically altering the characteristics of the emitters of the rows.
Abstract:
A voltage ratio regulator circuit for a spacer electrode of a flat panel display screen. Within one implementation of a field emission display (FED) device, thin spacer walls are inserted between a high voltage (Vh) faceplate and a backplate to secure these structures as a vacuum is formed between. A phosphor layer on the faceplate receives electrons selectively emitted from discrete electron emitting areas along the backplate (cathode) thereby forming images on the faceplate. The faceplate warms relative to the backplate, as a result of energy released by the phosphor layer, thereby generating a temperature gradient along the spacer walls. The top portion of each spacer wall becomes more conductive with increased temperature and acts to attract electrons that are emitted toward the faceplate. To counter this attraction, a spacer electrode is placed along each spacer wall at a height, d, above the backplate and maintained at a voltage, Ve. Electrodes of all of the spacer walls are coupled together. The spacer electrode at Ve and the high voltage supply at Vh are both coupled to a voltage ratio regulator circuit which maintains the ratio (Ve/Vh) using voltage dividers, an operational amplifier and other circuitry. The voltage ratio regulator compensates for variations in voltage supply performance. The time constants of the voltage ratio regular circuit is tuned to be near or slightly faster than the time constant of the inherent resistance and capacitance of the spacer wall. The invention can also correct for other sources of the voltage error on the spacer walls. The invention improves the electron path accuracy for pixels located near spacer walls.
Abstract:
The disclosure provides an apparatus for reducing speckle in a projection visual display (PVD) system, a method of reducing visible speckle in a PVD system and a PVD system incorporating the method or apparatus. In one embodiment, the apparatus includes a diffuser interposable in an optical path of a PVD system and a diffuser actuator having a single drive axis configured to cause the diffuser to travel in a Lissajous curve at least partially transverse to the optical path.