Abstract:
A terrestrial solar tracking photovoltaic array that may include an elongated frame configured to mount solar cell modules in a longitudinally-extending and spaced-apart arrangement. The frame is able to rotate each of the solar cell modules along a first axis to simultaneously track the elevation of the sun during the course of a day. The frame is also able to rotate each solar cell array module along second axes that are substantially perpendicular to the first axis to track the azimuthal position of the sun during the course of the day.
Abstract:
An automated method causes a terrestrial solar cell array to track the sun. The solar cell system includes motors that adjust a position of the array along different respective axes with respect to the sun, wherein a first motor adjusts the inclination angle of the array relative to the surface of the earth and a second motor rotates the array about an axis substantially perpendicular to that surface. The method includes (a) using a software algorithm to predict a position of the sun at a future time; (b) using a computer model to determine respective positions for the motors corresponding to the solar cell array being substantially aligned with the sun at the future time; and (c) activating and operating the motors at respective particular speeds so that at the future time the solar cell array is substantially aligned with the sun. The future time may correspond to any time during operation. An initial future time may correspond to a start up time after sunrise at which point the solar cell is to begin tracking the sun.
Abstract:
A terrestrial concentrator solar tracking photovoltaic array that may include an elongated frame configured to mount concentrator solar cell modules in a longitudinally-extending and spaced-apart arrangement. The frame is able to rotate each of the concentrator solar cell modules along a first axis to simultaneously track the elevation of the sun during the course of a day. The frame is also able to rotate each concentrator solar cell array module along second axes that are substantially perpendicular to the first axis to track the azimuthal position of the sun during the course of the day.
Abstract:
A dental prophylaxis angle and handpiece assembly for cleaning and polishing teeth is provided. The dental prophylaxis angle is removably attached to the dental handpiece by an interlocking mechanism that includes extension locking tabs, a locking annular member, and an interlocking drive member in the handpiece. The prophy angle is securely snap-fitted onto the handpiece and locked in place so that it has minimal lateral movement. After the prophy angle has been used to treat a patient, it can be removed easily from the handpiece and disposed thereof.
Abstract:
A sustained-release, dental fluoride varnish material includes about 5 percent by weight of NaF; up to about 10 percent by weight of glycerin; up to about 5 percent by weight of fumed silica; and optionally, an amount of varnish additives selected from the group consisting of flavorants, rosins, gums and alcohols.
Abstract:
There is disclosed a wall plate for a wiring device. The wall plate has a single opening for receiving one or a gang of two or more wiring devices within the single opening. The wall plate has along its vertical axis, a surface of positive first differential and zero second differential, comprised of a combination of splines drawn between points of varying distance from a datum plane. The surface has zero second differential when the rate of height increase of individual splines is constant. The wall plate, when composed of non-conducting material, has a conductive coating on its front surface, on its back surface or on both its front and back surfaces. When the wiring device is a switch, the surface of the switch face follows that of the wall plate. When the wiring device is a receptacle, the surface along the receptacle face is flat in one plane to allow for the proper seating of an inserted plug.
Abstract:
An apparatus includes a set of network communication modules, a communication control module and an input actuator. Each network communication module from the set of network communication modules is configured to send signals to and receive signals from a remote device via a distinct communication mode from a set of communication modes. The communication control module is configured to periodically send a set of second status signals intended to be sent to the remote device via each communication mode from the set of communication modes when the communication control module is in an emergency operating mode and the communication mode is available. The communication control module is configured to switch from the default operating mode to the emergency operating mode in response to receiving an input signal indicating that the input actuator has been actuated.
Abstract:
The terrestrial solar tracking photovoltaic array includes a longitudinal support that may be constructed of discrete sections. The overall length of the array may be adjusted depending upon the necessary size of the array. A drive may be configured to rotate the longitudinal support in first and second directions about a first axis. Solar cell modules are positioned along the longitudinal support and may each include a rectangular case with a plurality of lenses that are positioned over corresponding receivers. Linkages may be connected to the solar cell modules and are axially movable along the longitudinal support to rotate the solar cell modules within second planes that each orthogonal to the first plane to further track the sun during the course of the day. The array may be configured to facilitate rotation about the first axis. The array may be constructed with a center of gravity of the array to extending through the longitudinal support.
Abstract:
An automated method to monitor performance of a terrestrial solar cell array tracking the sun. The solar cell system includes drive means that adjust a position of the array along different respective axes with respect to the sun using the drive means. The techniques include predicting the position of the sun during a time period, and sampling an output parameter of the array indicative of performance. The sampled data may be used to identify a fault in the solar cell array, for example a misalignment or a failure of one or more solar cells, in which case a notification of that fault may be generated for the operator or a control signal may be output for correcting the fault. Alternatively, an output signal may be sent to an external system associated with the solar cell system. Various alignment testing routines for checking the solar tracking are described. These routines may involve moving a solar cell array to a reference position at the start of, or during, an alignment routine in order to improve accuracy of position measurement during the routine.
Abstract:
An automated method to monitor performance and adjust the programmed motion of a terrestrial solar cell array tracking the sun. The solar cell system includes two motor drives that adjust a position of the array along different respective axes with respect to the sun. A software algorithm predicts the position of the sun during the course of the day, and a kinematic model with adjustable encoding parameters controls the motor drives. Sampled data taken periodically may be used to update and modify the encoding parameters of the kinematic model in order to improve accuracy of the position of the array as it moves during the course of the day due to changes in mechanical or foundational positions supporting the array that may occur over the course of time.