摘要:
The invention relates to a stacked capacitor (10) comprising a silicon base plate (16), a poly-silicon center plate (32) arranged above the base plate (16), a lower gate-oxide dielectric (26) arranged between the base plate (16) and the center plate (32), a cover plate (36) made of a metallic conductor and arranged above the center plate (32), and an upper dielectric (34) arranged between the center plate (32) and the cover plate (36). The cover plate (36) and the base plate (16) are electrically connected to each other and together form a first capacitor electrode. The center plate (32) forms a second capacitor electrode. The invention further relates to an integrated circuit with such a stacked capacitor, as well as to a method for fabrication of a stacked capacitor as part of a CMOS process.
摘要:
The invention relates to a stacked capacitor (10) comprising a silicon base plate (16), a poly-silicon center plate (32) arranged above the base plate (16), a lower gate-oxide dielectric (26) arranged between the base plate (16) and the center plate (32), a cover plate (36) made of a metallic conductor and arranged above the center plate (32), and an upper dielectric (34) arranged between the center plate (32) and the cover plate (36). The cover plate (36) and the base plate (16) are electrically connected to each other and together form a first capacitor electrode. The center plate (32) forms a second capacitor electrode. The invention further relates to an integrated circuit with such a stacked capacitor, as well as to a method for fabrication of a stacked capacitor as part of a CMOS process.
摘要:
An integrated BiCMOS semiconductor circuit has active moat areas in silicon. The active moat areas include electrically active components of the semiconductor circuit, which comprise active window structures for base and/or emitter windows. The integrated BiCMOS semiconductor circuit has zones where silicon is left to form dummy moat areas which do not include electrically active components, and has isolation trenches to separate the active moat areas from each other and from the dummy moat areas. The dummy moat areas comprise dummy window structures having geometrical dimensions and shapes similar to those of the active window structures for the base and/or emitter windows.
摘要:
Method of producing complementary SiGe bipolar transistors. In a method of producing complementary SiGe bipolar transistors, interface oxide layers (38, 58) for NPN and PNP emitters (44, 64), are separately formed and emitter polysilicon (40, 60) is separately patterned, allowing these layers to be optimized for the respective conductivity type.
摘要:
An integrated circuit with gate self-protection comprises a MOS device and a bipolar device, wherein the integrated circuit further comprises a semiconductor layer with electrically active regions in which and on which the MOS device and the bipolar device are formed and electrically inactive regions for isolating the electrically active regions from each other. The MOS device comprises a gate structure and a body contacting structure, wherein the body contacting structure is formed of a base layer deposited in a selected region over an electrically active region of the semiconductor layer, and the body contacting structure is electrically connected with the gate structure. The base layer forming the body contacting structure also forms the base of the bipolar device. The present invention further relates to a method for fabricating such an integrated circuit.
摘要:
An junction field effect transistor (JFET) is fashioned with a patterned layer of silicide block (SBLK) material utilized in forming gate, source and drain regions. Utilizing the silicide block in this manner helps to reduce low-frequency (flicker) noise associated with the JFET by suppressing the impact of surface states, among other things.
摘要:
The disclosure herein pertains to fashioning an n channel junction field effect transistor (NJFET) and/or a p channel junction field effect transistor (PJFET) with an open drain, where the open drain allows the transistors to operate at higher voltages before experiencing gate leakage current. The open drain allows the voltage to be increased several fold without increasing the size of the transistors. Opening the drain essentially spreads equipotential lines of respective electric fields developed at the drains of the devices so that the local electric fields, and hence the impact ionization rates are reduced to redirect current below the surface of the transistors.
摘要:
The disclosure herein pertains to fashioning an n channel junction field effect transistor (NJFET) and/or a p channel junction field effect transistor (PJFET) with an open drain, where the open drain allows the transistors to operate at higher voltages before experiencing gate leakage current. The open drain allows the voltage to be increased several fold without increasing the size of the transistors. Opening the drain essentially spreads equipotential lines of respective electric fields developed at the drains of the devices so that the local electric fields, and hence the impact ionization rates are reduced to redirect current below the surface of the transistors.
摘要:
An integrated circuit with gate self-protection comprises a MOS device and a bipolar device, wherein the integrated circuit further comprises a semiconductor layer with electrically active regions in which and on which the MOS device and the bipolar device are formed and electrically inactive regions for isolating the electrically active regions from each other. The MOS device comprises a gate structure and a body contacting structure, wherein the body contacting structure is formed of a base layer deposited in a selected region over an electrically active region of the semiconductor layer, and the body contacting structure is electrically connected with the gate structure. The base layer forming the body contacting structure also forms the base of the bipolar device. The present invention further relates to a method for fabricating such an integrated circuit.
摘要:
A method of manufacturing an integrated circuit comprises depositing a electrically resistive layer of a material for serving as a thin film resistor (TFR), depositing an electrically insulating layer on the resistor layer, removing the electrically insulating layer from outside an electrically active area of the resistor layer corresponding to a target TFR area, and depositing an electrically conductive layer of an electrically conductive material such that the conductive layer overlaps the target TFR area and the conductive layer electrically contacts the resistor layer outside the target TFR area.