摘要:
An integrated BiCMOS semiconductor circuit has active moat areas in silicon. The active moat areas include electrically active components of the semiconductor circuit, which comprise active window structures for base and/or emitter windows. The integrated BiCMOS semiconductor circuit has zones where silicon is left to form dummy moat areas which do not include electrically active components, and has isolation trenches to separate the active moat areas from each other and from the dummy moat areas. The dummy moat areas comprise dummy window structures having geometrical dimensions and shapes similar to those of the active window structures for the base and/or emitter windows.
摘要:
An integrated BiCMOS semiconductor circuit has active moat areas in silicon. The active moat areas include electrically active components of the semiconductor circuit, which comprise active window structures for base and/or emitter windows. The integrated BiCMOS semiconductor circuit has zones where silicon is left to form dummy moat areas which do not include electrically active components, and has isolation trenches to separate the active moat areas from each other and from the dummy moat areas. The dummy moat areas comprise dummy window structures having geometrical dimensions and shapes similar to those of the active window structures for the base and/or emitter windows.
摘要:
Method of producing complementary SiGe bipolar transistors. In a method of producing complementary SiGe bipolar transistors, interface oxide layers (38, 58) for NPN and PNP emitters (44, 64), are separately formed and emitter polysilicon (40, 60) is separately patterned, allowing these layers to be optimized for the respective conductivity type.
摘要:
In a method of fabricating complementary bipolar transistors with SiGe base regions the base regions of the NPN and PNP transistors are formed one after the other over two collector regions 20, 14 by epitaxial deposition of crystalline silicon-germanium layers 32a, 36a. With this method the germanium profile of the SiGe layers can be freely selected for both NPN and PNP transistors in thus enabling complementary transistor performance to be optimized individually. The SiGe layers 32a, 36a can be doped with an n-type or p-type dopant during or after deposition of the silicon-germanium layers 32a, 36a.
摘要:
In a method of fabricating complementary bipolar transistors with SiGe base regions the base regions of the NPN and PNP transistors are formed one after the other over two collector regions 20, 14 by epitaxial deposition of crystalline silicon-germanium layers 32a, 36a. With this method the germanium profile of the SiGe layers can be freely selected for both NPN and PNP transistors in thus enabling complementary transistor performance to be optimized individually. The SiGe layers 32a, 36a can be doped with an n-type or p-type dopant during or after deposition of the silicon-germanium layers 32a, 36a.
摘要:
Method of producing complementary SiGe bipolar transistors. In a method of producing complementary SiGe bipolar transistors, interface oxide layers (38, 58) for NPN and PNP emitters (44, 64), are separately formed and emitter polysilicon (40, 60) is separately patterned, allowing these layers to be optimized for the respective conductivity type.
摘要:
A method of fabricating an epitaxial silicon-germanium layer for an integrated semiconductor device comprises the step of depositing an arsenic in-situ doped silicon-germanium layer, wherein arsenic and germanium are introduced subsequently into different regions of said silicon-germanium layer during deposition of said silicon-germanium layer. By separating arsenic from germanium any interaction between arsenic and germanium is avoided during deposition thereby allowing fabricating silicon-germanium layers with reproducible doping profiles.
摘要:
In a method of fabricating an integrated silicon-germanium heterobipolar transistor a silicon dioxide layer arranged between a silicon-germanium base layer and a silicon emitter layer is formed by means of Rapid Thermal Processing (RTP) to ensure enhanced component properties of the integrated silicon-germanium heterobipolar transistor.
摘要:
In a method of fabricating an integrated silicon-germanium heterobipolar transistor a silicon dioxide layer arranged between a silicon-germanium base layer and a silicon emitter layer is formed by means of Rapid Thermal Processing (RTP) to ensure enhanced component properties of the integrated silicon-germanium heterobipolar transistor.
摘要:
The invention relates to a stacked capacitor (10) comprising a silicon base plate (16), a poly-silicon center plate (32) arranged above the base plate (16), a lower gate-oxide dielectric (26) arranged between the base plate (16) and the center plate (32), a cover plate (36) made of a metallic conductor and arranged above the center plate (32), and an upper dielectric (34) arranged between the center plate (32) and the cover plate (36). The cover plate (36) and the base plate (16) are electrically connected to each other and together form a first capacitor electrode. The center plate (32) forms a second capacitor electrode. The invention further relates to an integrated circuit with such a stacked capacitor, as well as to a method for fabrication of a stacked capacitor as part of a CMOS process.