摘要:
An assembly has a mechanically movable element (1), by the movement of which an oscillatory system (2) can be excited to perform an oscillation which has a resonant frequency (f) and a corresponding oscillatory period (T). First of all, a control device (4) moves the mechanically movable element (1) at a first speed (v1). If the control device (4) is stipulated a second speed (v2) by an operator (7), the control device (4) determines a jolt profile, by means of which the speed (v) of the mechanically movable element (1) is changed to the second speed (v2), and moves the mechanically movable element (1) according to the determined jolt profile. Said control device (4) determines the jolt profile in such a way that an oscillation of the oscillatory system (2) which is excited at the beginning of the speed change is calmed at the end of the speed change.
摘要:
In a spindle rotor, the orientation of the figure axis is accepted and the anchoring of the rotor bearing (SL) is configured such that the orientation of the geometric rotational axis adapts to the physical main axis of inertia. The bearing is configured in the form of an actively controlled bearing, whereby the orientation is measured and is dynamically carried out, but also in the form of bearing comprising passive elements which are associated with the external ring of the bearing and enable a correspondingly dynamic orientation of the bearing. A damper (T) is provided to dampen the vibrations of the bearing (SL).
摘要:
The invention relates to a machine tool, wherein the machine tool has a workpiece clamping device (10) for clamping a workpiece (9), wherein the workpiece clamping device (10) and in this way the workpiece (9) can be moved by means of a piezoactuator (11a, 11b, 11c, 11d). The invention furthermore relates to a corresponding method. The invention provides a machine tool in which vibrations occurring during a machining operation are reduced.
摘要:
A piezo actuator includes an adaptation element, which is configured to adapt the piezo actuator to a controller for inductive loads, particularly to a converter for actuating inductive loads. The adaptation element allows use of controllers or converters of numerical control systems, which normally are used for actuating servo motors. Therefore it is no longer necessary to provide specially designed hardware for the actuation of piezo actuators, but instead the above-mentioned controllers can be used. Furthermore, as a result of the adaptation element, the piezo actuators can be integrated in the bus of the numerical control system. This allows communication in real time via the NC bus.
摘要:
The invention relates to a method of reducing vibrations, occurring during a machining operation, of a machine element (7,8) and/or of a workpiece (5) in a machine tool, production machine and/or in a machine (1) designed as a robot, wherein an additional mass (9a, 9b, 9c) is attached to the machine element (7,8) and/or to the workpiece (5) in an automated manner, wherein the mass of the additional mass (9a, 9b, 9c) is adapted to the machining operation. Furthermore, the invention relates to a machine (1) in this respect. The invention enables vibrations, occurring during a machining operation, of a machine element (7,8) of a machine (1) and/or of a workpiece (5) to be reduced.
摘要:
A drive apparatus with at least one synchronous motor, a converter and a mechanical energy buffer able to be fed from an energy supply network, which, for converting mechanical energy into electrical current, includes a first asynchronous machine, and a method of operation for such a drive apparatus are specified, with which or in which the energy buffer, especially its first asynchronous machine is directly electrically connected via a switchover device to the at least one synchronous motor, so that the converter included in the drive apparatus is bypassed for such a switch position of the switchover device and the converter accordingly does not have to be designed for currents which flow in such a switch position of the switchover device.
摘要:
A device for linearly moving a useful mass is described. Typically, when a large useful mass is moved, relatively large forces are transferred by a spindle or a toothed rack to the corresponding machine or machine frame. These forces can be compensated by moving a compensating mass in the opposite direction of the useful mass.
摘要:
The invention relates to a method of reducing vibrations, occurring during a machining operation, of a machine element (7,8) and/or of a workpiece (5) in a machine tool, production machine and/or in a machine (1) designed as a robot, wherein an additional mass (9a, 9b, 9c) is attached to the machine element (7,8) and/or to the workpiece (5) in an automated manner, wherein the mass of the additional mass (9a, 9b, 9c) is adapted to the machining operation. Furthermore, the invention relates to a machine (1) in this respect. The invention enables vibrations, occurring during a machining operation, of a machine element (7,8) of a machine (1) and/or of a workpiece (5) to be reduced.
摘要:
The invention relates to a method for guiding the displacement of a displaceable machine element (18) in a machine, comprising the following steps: a) specification of a guide target variable (xtarg) that describes the desired displacement operation of the machine element (18); b) determination of a pilot actual variable (Mpilot) and/or a guide actual variable (xact) from the guide target variable (xtarg) using a model (2), said model (2) comprising a path model (3), which simulates the dynamic behaviour of the elements (16, 18) involved in the displacement. The invention also relates to a device that corresponds to the method. The invention permits the optimised guidance of the displacement of a displaceable machine element (18) in a machine.
摘要:
A drive arrangement with a first motor and a second motor is described, the first and second motor being coupled via a first coupling unit. The first motor is provided to generate uniform low-frequency movements and the second motor performs a higher frequency alternating movement to be overlapped. The total movement is transmitted from the second motor to a machine component coupled via a second coupling unit. The first coupling unit is configured to transfer the uniform low-frequency movement of the first motor to the second motor, wherein a transmission of the higher frequency alternating movement of the second motor to the first motor is suppressed.