Abstract:
A failure detection device includes a formaldehyde sensor that detects the generation of formaldehyde, a vibration sensor that detects vibration of a spindle head, and a machine controller that detects the occurrence of an abnormality of a spindle bearing. The machine controller determines the occurrence of the abnormality of the spindle bearing and a cause of the abnormality based on a change in the output value of the formaldehyde sensor over time and a change in the output value of the vibration sensor over time.
Abstract:
Sensor sets for bearings are disclosed, e.g., for mechanical bearings. The set may include a plurality of modules, which may include one or more functional modules configured to measure bearing state variables. The functional modules may each have an electrical interface that is compatible with one another. At least one of the functional modules may be an acceleration measurement module configured to measure an acceleration which occurs on an oscillating component of the bearing. The acceleration measurement module may be configured to output an acceleration measurement signal. One or more infrastructure modules may be included for realizing communication tasks and/or for storing and/or processing pre-specified and/or recorded data. The infrastructure modules may each have an electrical interface such that they are interoperable with at least one of the functional modules. At least one of the infrastructure modules may be a signal evaluation unit configured to evaluate the acceleration measurement signal.
Abstract:
A condition monitoring system (CMS) for vehicle bearing units, including at least one condition monitoring unit (CMU) for measuring at least one operating parameter of one bearing unit and a control unit for receiving and processing signals from the CMU. The control unit is configured to activate/deactivate the CMU(s) upon reaching at least one predetermined waypoint stored in a waypoint memory of the control unit. The CMS can be equipped with a waypoint setting unit for setting the at least one waypoint at which the CMU(s) shall be activated/deactivated and to store the waypoint in the waypoint memory. The waypoint setting unit processes route data includes data on at least a curviness of at least one route intended for vehicle travel. The processing includes extracting at least one route section within the curviness of the route within a predetermined range and setting the waypoint(s) within the extracted route section.
Abstract:
Estimating residual useful life of a rolling element bearing in an operating gas turbine engine is provided. A processor receives a vibration signal from a vibration sensor. The vibration signal includes a vibratory response of the rolling element bearing. Processor detects a vibratory pattern of the rolling element bearing from the vibration signal and compares the vibratory pattern to a reference vibratory pattern. Processor identifies a failure propagation stage in which the vibratory pattern matches the reference vibratory pattern. Processor correlates the failure propagation stage to the residual useful life remaining in the rolling element bearing and generates an output signal representing the residual useful life remaining in the rolling element bearing.
Abstract:
A fan vibration damping structure and a fan with the vibration damping structure. The fan vibration damping structure includes a bearing cup, a first bearing, a second bearing, a third bearing, an elastic member and at least one oil seal. The bearing cup has an internal receiving space and a bearing hole in communication with each other. The first, second and third bearings and the elastic member are disposed in the receiving space. A high-viscosity-coefficient oil is filled in the receiving space. The fan vibration damping structure is applied to the fan to greatly reduce vibration of the fan in operation.
Abstract:
For the purpose, a physical quantity regarding a bearing body is detected by a detection sensor provided in the bearing body, and detection information of the detection sensor is transmitted by a wireless transmitting unit provided in the bearing body via wireless communication. At this time, the detection information is transmitted at a first transmission interval when the detection information is smaller than a threshold value and is a normal value, and the detection information is transmitted at a second transmission interval that is shorter than the first transmission interval when the detection information is the threshold value or larger and is an abnormal value.
Abstract:
A bearing device includes a bearing having an outer race with double-row outer raceway surfaces formed on its inner periphery, a hub wheel and an inner race having double-row inner raceway surfaces formed on outer peripheries thereof opposed to the outer raceway surfaces, and double-row rolling elements interposed between the outer and inner raceway surfaces. The bearing has a constant velocity universal joint separably coupled thereto with a screw fastening structure, in which a stem section of an outer joint member of the constant velocity universal joint is fitted to an inner diameter portion of the hub wheel, and in which a plurality of convex portions extending in an axial direction are formed on the stem section, and a plurality of concave portions having an interference with respect to only circumferential side wall portions of each of the plurality of convex portions are formed on the hub wheel.
Abstract:
A ball bearing inspection device includes: an arbor supporting an inner ring on the outer circumferential surface; a rotary drive unit driving the arbor; a first pressing unit applying a preload to a ball bearing; a second pressing unit applying a preload in an opposite direction of the pressing direction; and a vibration detection unit detecting vibration from the ball bearing. The arbor includes an abutting section that protrudes outward from the outer circumferential surface, a movable flange arranged apart from the abutting section, and a flange drive mechanism switching the movable flange between a first state in which the movable flange protrudes from the outer circumferential surface and a second state in which the movable flange is accommodated within the arbor. The flange drive mechanism is additionally provided with a drive force supply unit that applies drive force for switching to the first or the second state.
Abstract:
A rolling bearing includes an inner ring, an outer ring, a plurality of balls, a cage that holds the balls, and a sealing device that is attached to each of opposite sides of the outer ring in an axial direction to prevent foreign matter from entering inside the bearing. A noise-reduction portion that attenuates sound inside the bearing is formed on at least one of a surface of the cage and a bearing inner-side surface of the sealing device.
Abstract:
A fan vibration damping structure and a fan with the vibration damping structure. The fan vibration damping structure includes a bearing cup, a first bearing, a second bearing, a third bearing, an elastic member and at least one oil seal. The bearing cup has an internal receiving space and a bearing hole in communication with each other. The first, second and third bearings and the elastic member are disposed in the receiving space. A high-viscosity-coefficient oil is filled in the receiving space. The fan vibration damping structure is applied to the fan to greatly reduce vibration of the fan in operation.