Abstract:
Disclosed herein is a micromirror device having in-plane deformable hinge to which a deflectable and reflective mirror plate is attached. The mirror plate rotates to different angles in response to an electrostatic field established between the mirror plate and an addressing electrode associated with the mirror plate.
Abstract:
A method for processing microelectromechanical devices is disclosed herein. The method prevents the diffusion and interaction between sacrificial layers and structure layers of the microelectromechanical devices by providing selected barrier layers between consecutive sacrificial and structure layers.
Abstract:
A method for processing microelectromechanical devices is disclosed herein. The method prevents the diffusion and interaction between sacrificial layers and structure layers of the microelectromechanical devices by providing selected barrier layers between consecutive sacrificial and structure layers.
Abstract:
To protect the structural layers from being eroded in the etching process, a protection layer is deposited on the exposed structural layers of the micromirror. The protection layer is deposited before etching and removed after etching.
Abstract:
Disclosed herein is method of operating a device that comprises an array of micromirrors. The method comprises a process usable for repairing stuck micromirrors of the micromirror array during the operation. The reparation process applies, at the ON state, two consecutive refresh voltages to the mirror plates of the micromirrors in the array with the pulses being separated in time longer than the characteristic oscillation time of the micromirrors. The reparation process can be applied independently to the micromirrors. Alternatively, the reparation process can be incorporated with a bias inversion process.
Abstract:
Disclosed herein a microelectromechanical device having first and second substrates that are bonded together with a gap formed therebetween. A plurality of functional members is disposed within the gap. The two substrates are bonded with a bonding agent that comprises an electrically conductive adhesive material.
Abstract:
A micromirror device and a method of making the same are disclosed herein. The micromirror device comprises a mirror plate, hinge, and post each having an electrically conductive layer. One of the hinge, mirror plate, and post further comprises an electrically insulating layer. To enable the electrical connections between the conducting layers of the hinge, mirror plate, and post, the insulating layer is patterned.
Abstract:
Disclosed herein is a micromirror device having in-plane deformable hinge to which a deflectable and reflective mirror plate is attached. The mirror plate rotates to different angles in response to an electrostatic field established between the mirror plate and an addressing electrode associated with the mirror plate.
Abstract:
A microstructure and the method for making the same are disclosed herein. The microstructure has structural members, at least one of which comprises an intermetallic compound. In making such a microstructure, a sacrificial material is employed. After completion of forming the structural layers, the sacrificial material is removed by a spontaneous vapor phase chemical etchant.
Abstract:
The present invention provides a microstructure device comprising multiple substrates with the components of the device formed on the substrates. In order to maintain uniformity of the gap between the substrates, a plurality of pillars is provided and distributed in the gap so as to prevent decrease of the gap size. The increase of the gap size can be prevented by bonding the pillars to the components of the microstructure. Alternatively, the increase of the gap size can be prevented by maintaining the pressure inside the gap below the pressure under which the microstructure will be in operation. Electrical contact of the substrates on which the micromirrors and electrodes are formed can be made through many ways, such as electrical contact areas, electrical contact pads and electrical contact springs.