摘要:
Differentiated services are provided through service level agreements (SLAs) between access nodes and some of the clients using a wireless access network. Client devices include internal devices that are compliant with service-related specifications published by the access nodes. Client devices also may include non-compliant external and legacy devices, as well as outside interferers. The access nodes control target SLAs for each client device. The access nodes and the internal client devices perform rate limiting to ensure that a device's target SLA is adhered to. The service-related specifications include schedules to ensure preferential access for preferred internal client devices. The internal client devices send usage and bandwidth availability feedback to the access node they are associated with, enabling the access node to come up with better schedules for meeting the preferred internal devices' SLAs in view of the network conditions reported via the feedback.
摘要:
Various embodiments implement a set of low overhead mechanisms to enable on-demand routing protocols. The on-demand protocols use route accumulation during discovery floods to discover when better paths have become available even if the paths that the protocols are currently using are not broken. In other words, the mechanisms (or “Route Optimizations”) enable improvements to routes even while functioning routes are available. The Route Optimization mechanisms enable nodes in the network that passively learn routing information to notify nodes that need to know of changes in the routing information when the changes are important. Learning routing information on up-to-date paths and determining nodes that would benefit from the information is performed, in some embodiments, without any explicit control packet exchange. One of the Route Optimization mechanisms includes communicating information describing an improved route from a node where the improved route diverges from a less nearly optimal route.
摘要:
In a mesh network composed of multiple-radio nodes, we assign each radio to one of a plurality of channels, and treat a plurality of links between a pair of nodes as one logical link (bonded link). In some embodiments, the routing protocol is adapted to view each bonded link as one link having a combination of at least some of the properties of the constituent physical links. Traffic sent along a path is dynamically load balanced between the interfaces at each intermediate node based on the current utilization of each interface. In at least some embodiments, route discovery packets record the metrics of each component link of the bonded links leaving a node, but only one route discovery packet per pair of nodes is forwarded, reducing the route discovery packet traffic compared to if each route discovery packet were forwarded over each component link between the pair of nodes.
摘要:
In a mesh network composed of multiple-radio nodes, we assign each radio to one of a plurality of channels, and treat a plurality of links between a pair of nodes as one logical link (bonded link). In some embodiments, the routing protocol is adapted to view each bonded link as one link having a combination of at least some of the properties of the constituent physical links. Traffic sent along a path is dynamically load balanced between the interfaces at each intermediate node based on the current utilization of each interface. In at least some embodiments, route discovery packets record the metrics of each component link of the bonded links leaving a node, but only one route discovery packet per pair of nodes is forwarded, reducing the route discovery packet traffic compared to if each route discovery packet were forwarded over each component link between the pair of nodes.
摘要:
Differentiated services are provided through service level agreements (SLAs) between access nodes and some of the clients using a wireless access network. Client devices include internal devices that are compliant with service-related specifi-cations published by the access nodes. Client devices also may include non-compliant external and legacy devices, as well as out-side interferers. The access nodes control target SLAs for each client device. The access nodes and the internal client devices per-form rate limiting to ensure that a device's target SLA is adhered to. The service-related specifications include schedules to ensure preferential access for preferred internal client devices. The internal client devices send usage and bandwidth availability feedback to the access node they are associated with, enabling the access node to come up with better schedules for meeting the preferred internal devices' SLAs in view of the network conditions reported via the feedback.
摘要:
Techniques are described for automatically determining quasi-static per-link channel assignments for each radio in multiple-hop mesh networks having nodes with two or more radios and where only a small number of channels is available for use in the network. The method optimally assigns the channels to the radios of all of the nodes in the network so as to achieve the lowest interference among links and the highest possible bandwidth.
摘要:
Various embodiments implement a set of low overhead mechanisms to enable on-demand routing protocols. The on-demand protocols use route accumulation during discovery floods to discover when better paths have become available even if the paths that the protocols are currently using are not broken. In other words, the mechanisms (or “Route Optimizations”) enable improvements to routes even while functioning routes are available. The Route Optimization mechanisms enable nodes in the network that passively learn routing information to notify nodes that need to know of changes in the routing information when the changes are important. Learning routing information on up-to-date paths and determining nodes that would benefit from the information is performed, in some embodiments, without any explicit control packet exchange. One of the Route Optimization mechanisms includes communicating information describing an improved route from a node where the improved route diverges from a less nearly optimal route.
摘要:
A mesh network, operating as a virtual Ethernet switch, includes multiple nodes operating as Mesh Network Gateway Interfaces (mesh NGIs) enabled for communication with one or more shared access networks. Selectively coupling the multiple NGIs to the same shared access network provides redundancy and load balancing aimed at improving the reliability and performance of the network. A first architecture is based on a gateway group, including a plurality of NGIs enabled to communicate with a single shared access network via a designated broadcast server elected from among the NGIs. A second architecture is based on a plurality of (physical) NGIs enabled to communicate with a single shared access network via one or more designated nodes in the shared access network. The designated nodes, or Mesh Servers (MSs), operate as virtual NGIs, and traffic entering or exiting the mesh flows through one of the MSs, thus improving packet broadcast efficiency.