Abstract:
In one example embodiment, an apparatus may include a panel with integrated fluid channels, wherein the panel and the fluid channel consist only of surfaces that can be manufactured with a straight-pull mold. A port may also be integrated into the panel to facilitate coupling the fluid channel to pneumatic components in an assembly. A seal may be secured to the panel over the fluid channel to form an integrated fluid conductor. The seal is preferably an adhesive label that can also be used for product labeling. Such an apparatus may be used in a control unit of a therapy system, employing several integrated fluid conductors. A method of manufacturing may include molding a panel, wherein the mold forms a channel integral to the panel. The panel and the channel preferably consist of surfaces that can be molded with a straight-pull mold.
Abstract:
A system for providing negative-pressure therapy to breast tissue is disclosed. In some embodiments, the system may include a dressing assembly shaped for placement on a breast, an absorbent pouch, and a negative-pressure source. The system may further include an additional dressing assembly for placement on a second breast. Various shapes and configurations of the breast dressing assemblies may be included in the system.
Abstract:
A treatment system for applying negative pressure therapy and fluid instillation treatment to a tissue site, particularly an abdominal tissue site, is disclosed. In some embodiments, the treatment system may include a dressing member, a plurality of fluid removal pathways, a fluid instillation matrix, a drape, a negative-pressure source, and a fluid instillation source. Instillation fluid may be delivered from the fluid instillation source to the tissue site through the fluid instillation matrix, and negative pressure may be communicated and fluid withdrawn from the tissue site through the plurality of fluid removal pathways.
Abstract:
New and useful systems, apparatuses, and methods for providing negative-pressure therapy with instillation of topical treatment solutions are described. An apparatus may comprise an exudate container, a solution source, and a pneumatically-actuated instillation regulator. The instillation regulator may be coupled to the exudate container and to the solution source, and negative pressure from a negative-pressure source can actuate the instillation regulator. In some embodiments, a negative-pressure source may be configured for a negative-pressure interval and a venting interval, and the instillation regulator can be configured to draw instillation solution from the solution source during a negative-pressure interval and to instill the solution to a dressing during a venting interval.