Abstract:
Provided herein is a method for forming a capacitor and an improved capacitor formed by the method. The method comprises providing an anode with an anode lead extending therefrom. A dielectric is formed on the anode thereby forming an anodized anode. A cathode layer is formed over the dielectric wherein the cathode layer is formed by applying a conductive polymer solution or dispersion and applying a primer solution or dispersion comprising a monophosphonium or monosulfonium cation.
Abstract:
A capacitor and process for forming the capacitor, is provided wherein the capacitor comprises a conductive polymer layer. The conductive polymer comprises first particles comprising conductive polymer and polyanion and second particles comprising the conductive polymer and said polyanion wherein the first particles have an average particle diameter of at least 1 micron to no more than 10 microns and the second particles have an average particle diameter of at least 1 nm to no more than 600 nm.
Abstract:
Provided is an improved capacitor formed by a process comprising: providing an anode comprising a dielectric thereon wherein the anode comprises a sintered powder wherein the powder has a powder charge of at least 45,000 μFV/g; and forming a first conductive polymer layer encasing at least a portion of the dielectric by applying a first slurry wherein the first slurry comprises a polyanion and a conductive polymer and wherein the polyanion and conductive polymer are in a weight ratio of greater than 3 wherein the conductive polymer and polyanion forms conductive particles with an average particle size of no more than 20 nm.
Abstract:
A capacitor, and method for making the capacitor, is provided with improved charging characteristics. The capacitor has an anode, a cathode comprising a conductive polymer layer and a work function modifier layer adjacent the conductive polymer layer and a dielectric layer between the anode and the cathode.
Abstract:
An improved capacitor is provided wherein the capacitor comprises a conductive polymer layer. The conductive polymer comprises first particles comprising conductive polymer and polyanion and second particles comprising the conductive polymer and said polyanion wherein the first particles have an average particle diameter of at least 1 micron to no more than 10 microns and the second particles have an average particle diameter of at least 1 nm to no more than 600 nm.
Abstract:
A capacitor and a method of making a capacitor, is provided with improved reliability performance. The capacitor comprises an anode; a dielectric on the anode; and a cathode on the dielectric wherein the cathode comprises a conductive polymer and a polyanion wherein the polyanion is a copolymer comprising groups A, B and C represented by Formula AxByCz as described herein.
Abstract:
An improved capacitor is described wherein the capacitor comprises a working element. The working element comprises a first dielectric and an anode conductive polymer layer on the first dielectric. The working element also comprises a cathode and a separator between the anode conductive polymer layer and the cathode wherein the separator comprises a separator conductive polymer layer wherein at least one of the anode conductive polymer layer or the separator conductive polymer layer is crosslinked. The working element also comprises a liquid electrolyte.
Abstract:
An improved capacitor is provided wherein the improved capacitor has improved ESR. The capacitor has a fluted anode and an anode wire extending from the fluted anode. A dielectric is on the fluted anode. A conformal cathode is on the dielectric and a plated metal layer is on the carbon layer.
Abstract:
A capacitor, and method for making the capacitor, is provided with improved charging characteristics. The capacitor has an anode, a cathode comprising a conductive polymer layer and a work function modifier layer adjacent the conductive polymer layer and a dielectric layer between the anode and the cathode.
Abstract:
A solid electrolytic capacitor and method for forming a solid electrolytic capacitor with high temperature leakage stability is described. The solid electrolytic capacitor has improved leakage current and is especially well suited for high temperature environments such as down-hole applications.