Abstract:
Provided is a wavelength converting structure for near-infrared rays and a solar cell using the same. More particularly, provided is a novel wavelength converting structure for near-infrared rays using gap plasmon characteristics and up-conversion nanoparticles. When applying the wavelength converting structure for near-infrared rays to a solar cell, it is possible to convert the light within a wavelength range of near-infrared rays into electric energy so that the photoconversion efficiency may be improved.
Abstract:
The present invention relates to a solar cell having a wavelength converting layer formed of a polysilazane and a manufacturing method thereof to allow for low temperature sintering, to protect a wavelength converter from oxidation, degradation, and whitening, and thereby improve efficiency of the solar cell. The present invention provides for the solar cell including the wavelength converting layer which is formed by applying a coating solution containing a solvent, a polysilazane, and a wavelength converter onto a cell and an outer surface or inside of the cell, and then curing, and a manufacturing method of.