Abstract:
Disclosed herein is a method of printing a nanostructure including: preparing a template substrate on which a pattern is formed; forming a replica pattern having an inverse phase of the pattern by coating a polymer thin film on an upper portion of the template substrate, adhering a thermal release tape to an upper portion of the polymer thin film, and separating the polymer thin film from the template substrate; forming a nanostructure by depositing a functional material on the replica pattern; and printing the nanostructure deposited on the replica pattern to a substrate by positioning the nanostructure on the substrate, applying heat and pressure to the nanostructure, and weakening an adhesive force between the thermal release tape and the replica pattern by the heat.
Abstract:
The present invention relates to a novel method for preparing a water-insoluble metal hydroxide, and a use thereof. The water-insoluble metal hydroxide of the present invention is conveniently and efficiently prepared s through the high-temperature heat treatment step two times and the washing step, and thus contains a small amount of an alkali metal and has a high crystallinity and a phase purity. The water-insoluble metal hydroxide of the present invention or metal oxide therefrom exhibits an absorption wavelength at a low wavelength range (for example, 490 nm or less) and a light emitting wavelength at a high wavelength range (for example, from 500 nm or more to less than 1,100 nm). Accordingly, the water-insoluble metal hydroxide of the present invention may be efficiently used in various applications such as a fire retardant, an antacid, an adsorbent and so forth, and may also be doped with another metal ion to be utilized as a raw material for fabricating a catalyst, a fluorescent material, an electrode material, a secondary battery material and the like.
Abstract:
Provided is a coloring pattern structure. The coloring pattern structure includes: a substrate; a light-transmitting dielectric layer formed on at least one surface of the substrate; and a composite material layer disposed on an upper surface of the light-transmitting dielectric layer and formed of a metal and a first material not having a thermodynamic solid solubility in the metal, wherein the metal included in the composite material layer has a pattern coated only on portions of the upper surface of the light-transmitting dielectric layer, and the first material is coated on the remaining area where the metal is not coated.
Abstract:
There are provided a coating composition having excellent visible light transmittance and photoluminescence properties, and a wavelength converting thin film prepared by using the same. The coating composition according to the present invention includes a solvent, polysilazane, and a wavelength converting agent, and has visible light transmittance of 50% or more with respect to an aqueous solution. According to the present invention, a wavelength converting thin film having excellent visible light transmittance and photoluminescence properties can be prepared.
Abstract:
Provided is a copper indium gallium selenium (CIGS)- or copper zinc tin sulfur (CZTS)-based solar cell including a back electrode layer and a light-absorbing layer, wherein the light-absorbing layer has a composition of CuxInyGa1-y(SzSe1-z)2 (wherein 0.85≦x
Abstract translation:提供了一种包含背面电极层和光吸收层的铜铟镓硒(CIGS) - 或铜锌锡硫(CZTS))太阳能电池,其中光吸收层具有CuxInyGa1-y(SzSe1 -z)2(其中0.85&nlE; x <1,0
Abstract:
The present disclosure relates to down-shifting nanophosphors, a method for preparing the same, and a luminescent solar concentrator (LSC) using the same. The down-shifting nanophosphors according to an embodiment of the present disclosure include a core including NaYF4 nanocrystals doped with neodymium (Nd) and ytterbium (Yb), and further include a neodymium (Nd)-doped crystalline shell surrounding the core, or further include a NaYF4 crystalline shell surrounding the crystalline shell. Therefore, the down-shifting nanophosphors efficiently absorb near infrared rays with a wavelength range of 700-900 nm and efficiently emit near infrared rays with a wavelength range of 950-1050 nm. In addition, the down-shifting nanophosphors according to an embodiment of the present disclosure has a size of 60 nm or less, and thus can be applied to manufacture transparent LSC films with ease and can realize transparent solar cell modules having high near infrared ray shifting efficiency.
Abstract:
There is provided a phosphor powder which includes a wavelength converting material and a silica-based inorganic substance surrounding the wavelength converting material and represented by the following Formula 1, wherein a content of a hydrosilyl group (Si—H) is greater than or equal to 10 ppm by weight, based on the total weight of the silica-based inorganic substance: wherein X represents oxygen (O) or an amine group (NH), Y represents hydrogen (H), a hydroxyl group (OH), an amino group (NH2), or an alkyl group containing heteroelements, and the heteroelements include at least one selected from the group consisting of phosphorus (P), nitrogen (N), sulfur (S), oxygen (O), and a halogen element.
Abstract:
Disclosed herein is a method of depositing a transition metal single-atom catalyst including preparing a carbon carrier, and depositing a transition metal single-atom catalyst on the carbon carrier, in which the carbon carrier is surface-treated by an oxidation process, and wherein the deposition is carried out by an arc plasma process.
Abstract:
Provided is a dye-sensitized upconversion nanophosphor including a core, a first shell surrounding at least part of the core, and an organic dye bonded to a surface of the nanophosphor to have an absorption band ranging from 650 nm to 850 nm and be excited in a near-infrared region to emit visible light.
Abstract:
Provided is a nanophosphor having a core/double shell structure, the nanophosphor including a upconversion core including a Yb3+, Ho3+, and Ce3+− co-doped fluoride-based nanophosphor represented by Formula 1; a first shell surrounding at least a portion of the upconversion core, and comprising a Nd3+ and Yb3+ co-doped fluoride-based crystalline composition represented by Formula 2; and a second shell surrounding at least a portion of the first shell, and having paramagnetic properties represented by Formula 3.