Abstract:
An optical scanning device includes an oscillating mirror part, a torsion bar part, a piezoelectric element (driving part), a housing, and an optical element part. The oscillating mirror part includes a reflective surface capable of reflecting light from a first light source and a mass adjustment part formed on an opposite surface of the oscillating mirror part to the reflective surface and configured to be capable of reducing a mass thereof by exposure to laser light. The torsion bar part supports the oscillating mirror part. The piezoelectric element is configured to torsionally oscillate the oscillating mirror part about the torsion bar part. The housing accommodates the oscillating mirror part, the torsion bar part, and the piezoelectric element. The optical element part is configured to reflect or transmit the laser light from a second light source disposed outside of the housing to expose the mass adjustment part to the laser light.
Abstract:
A developing device includes a developing container, a first stirring conveyance member, a second stirring conveyance member, a developer carrying member, a toner concentration sensor, and a scraper. The first stirring conveyance member includes a rotary shaft, a first conveyance blade that is formed on an outer circumferential surface of the rotary shaft and conveys a developer in a first direction, and a second conveyance blade that has the opposite phase to the first conveyance blade and has a lower radial height than the first conveyance blade. The scraper is arranged substantially parallel to the rotary shaft at a position shifted in an axial direction from intersections between the first conveyance blade and the second conveyance blade and has a phase of 45° to 135° with respect to the closest one of the intersections on an upstream side in the first direction.
Abstract:
An optical deflector is a piezoelectrically-driven optical deflector including a vibration mirror part having a reflection surface portion for reflecting light, a torsion bar part connected to the vibration mirror part, and a piezoelectric element that allows the vibration mirror part to swing around the torsion bar part so as to vibrate. Protruding portions are formed respectively at both end portions of the vibration mirror part in a main scanning direction of reflected light to protrude to an outer side in the main scanning direction.
Abstract:
A groove in which a curable resin is filled, is formed on the opposite side face of a face for reflecting light of an oscillating mirror unit. The groove extends so as to cross the swing axis of the oscillating mirror unit, seen from the opposite side of the reflection face of the oscillating mirror unit.
Abstract:
An optical scanning device includes an oscillating mirror part, a torsion bar part, a piezoelectric element (driving part), a housing, and an optical element part. The oscillating mirror part includes a reflective surface capable of reflecting light from a first light source and a mass adjustment part formed on an opposite surface of the oscillating mirror part to the reflective surface and configured to be capable of reducing a mass thereof by exposure to laser light. The torsion bar part supports the oscillating mirror part. The piezoelectric element is configured to torsionally oscillate the oscillating mirror part about the torsion bar part. The housing accommodates the oscillating mirror part, the torsion bar part, and the piezoelectric element. The optical element part is configured to reflect or transmit the laser light from a second light source disposed outside of the housing to expose the mass adjustment part to the laser light.
Abstract:
A developing device includes a developing container, a first stirring conveyance member, a second stirring conveyance member, a developer carrying member including a developing sleeve and a magnet, and a regulation member. The regulation pole in the magnet has a region extending over 10° or more in which a maximum value of a vertical magnetic force is not more than 65 [mT] and a vertical magnetic force gradient is not more than 0.3 [mT/°]. A peak position of the vertical magnetic force gradient of the regulation pole is arranged at a position opposed to the second stirring conveyance member, and when a value of the vertical magnetic force gradient and a value of the vertical magnetic force at the peak position of the vertical magnetic force gradient are indicated as A [mT/°] and K [mT], respectively, A≥2.8 and A×K≥62.5 are satisfied.
Abstract:
A developing device includes a developer container, a developer carrier, and first and second stirring/conveying members. The developer container includes a first partition wall partitioning between the two conveying chambers longitudinally, a first communication portion for passing developer from the first to the second conveying chamber, a second communication portion for passing developer from the second to the first conveying chamber, a developer supply port for supplying developer in, a developer discharge portion for discharging excessive developer, a second partition wall arranged, adjacent to the regulating portion, downstream of the second communication portion to partition between the first conveying chamber and the regulating portion, and a shield portion connected to the two partition walls to bridge between them to shield a top part of the second communication portion. A gap is formed between an upper end part of the shield portion and the inner surface of the developer container.
Abstract:
A developing device includes a developer container, a developer carrier, and first and second members for stirring/conveying. The developer container includes a first partition wall between first and second chambers, a communication portion through which those chambers communicate at opposite ends of the first partition wall, a developer supply port, and a developer discharge portion. The first member stirs and conveys developer in the first chamber in a first direction. The second member stirs and conveys developer in the second chamber in a second direction and includes a regulating portion and a discharging blade. The developer container includes a second partition wall between the first chamber and the regulating portion. The gap from the upper end of the second partition wall to the inner surface of the developer container is larger than the gap thereto from the upper ends of a first helical blade and the regulating portion.
Abstract:
A laser scanning device includes light source, deflection portion, image forming lens, a block position setting portion, and a light source control portion. The image forming lens condenses a light beam deflected by the deflection portion on a scanned surface, and causes the light beam to be scanned on the scanned surface in a scanning direction at an equal speed. The block position setting portion sets one or more block areas which each include a plurality of section areas sectioned from each other on the scanned surface in the scanning direction. The light source control portion controls the light source to irradiate the light beam to the plurality of section areas at a plurality of irradiation timings that are determined for each of the block areas. The block position setting portion shifts set positions of the block areas along the scanning direction for each scan of at least one line.
Abstract:
An optical deflector includes a mirror unit and a support member. The mirror unit includes a vibration mirror part extending in a main scanning direction and a torsion bar part extending in a direction crossing the main scanning direction and supporting the vibration mirror part. The support member supports the mirror unit. The support member has a pair of solid parts. The pair of solid parts are arranged adjacent to the circumferential side surfaces of both end portions of the vibration mirror part in the main scanning direction and suppress a vortex generated when the vibration mirror part vibrates. The optical deflector further includes a positioning mechanism which performs positioning of the mirror unit for the support member so that a clearance distance between each solid part and the circumferential side surfaces of both end portions of the vibration mirror part becomes a preset setting distance.