Abstract:
A compensation device that can include a bias-able device, a bias circuit that provides the bias-able device with a bias current, a signal conditioner selectively coupled to the bias-able device, and an emulator. The signal conditioner and emulator can divert current from the bias-able device in an operational and calibration mode, respectively. In calibration mode, the emulator generates a compensation current that is combined with a sense current so that the sense current equals the bias current.
Abstract:
Method determining lookup table (“LUT”) for embedding watermark. For each quantization cell, calculating probabilities that signal point falls into cell. Selecting cell by probabilities. Setting LUT value to watermark value with largest probability, subject to run constraint. For remaining cells, repeating selecting and setting steps. Other method determining quantization ensemble by calculating probability density function for signal points where the watermark value to be embedded. Distortion and robustness functions are formulated. Given robustness or distortion is selected. Functions optimized, and ensemble of quantizers determined with parameters that comply. Other method quantizing in association with lossy compression. Strength of compression determined. Adapting strength of watermark with strength of compression by a mapping. Other method selecting points for embedding watermark. Determine threshold between large and small signal points using statistical method. Select signal points for embedding according to threshold. Also, processors, computer programs, and systems.
Abstract:
A circuit for measuring resistance of a magnetoresistive head. First and second current biasing circuits are respectively coupled to opposite sides of the head. The first biasing circuit includes a first resistance, and the second biasing circuit includes a second resistance. First and second current mirrors are respectively coupled to the first and second biasing circuits. A current leg is coupled to the current mirrors. The current mirrors drive current in the resistances so that a first voltage across the first resistance is substantially equal and opposite to a second voltage across the second resistance. The biasing circuits bias current through the head such that a voltage on the first side of the head is close to the first voltage and a voltage on the second side of the head is close to the second voltage, so that the common mode voltage of the head will be close to zero.
Abstract:
In general terms, the present invention provides a method of automatically scanning an inventory field to allow the selection of a desired item for retrieval. A camera is positioned in the crane trolley located above the field. The camera continuously performs a scan of the field displaying an image to the operator of the items being scanned. This real-time image allows the operator to distinguish between items scanned in the field. The operator can subsequently choose the desired item triggering the camera system to automatically capture desired information from the item which is in turn communicated to an inventory control system. The camera system mitigates the requirement of a second individual to communicate information between the field and the operator.
Abstract:
In general terms, the present invention provides a method of automatically scanning an inventory field to allow the selection of a desired item for retrieval. A camera is positioned in the crane trolley located above the field. The camera continuously performs a scan of the field displaying an image to the operator of the items being scanned. This real-time image allows the operator to distinguish between items scanned in the field. The operator can subsequently choose the desired item triggering the camera system to automatically capture desired information from the item which is in turn communicated to an inventory control system. The camera system mitigates the requirement of a second individual to communicate information between the field and the operator.
Abstract:
A biasing device can supply a bias voltage to bias-able element by coupling a bias circuit to the bias-able element, coupling a state adjusting device to the biasing circuit, configuring the state adjusting device to 1) increase an initial biasing voltage by a first amount when an intermediate voltage threshold exceeds a voltage drop across the bias-able element and 2) increment the increased initial bias voltage by a second amount, where the second amount is a fraction of the first amount, until the voltage drop across the bias-able element substantially equals a predetermined bias voltage. The bias circuit of the biasing device can include a variable resistance, which is controlled by the state adjusting device and configured to vary the biasing voltage, in series with the bias-able element. The variable resistance can include a first variable resistance coupled in series to a first terminal of the bias-able element and a second variable resistance coupled in series to a second terminal of the bias-able element.
Abstract:
A linear regulator for outputting a regulated voltage with improved rejection of high frequency components in the power supply. The linear regulator includes an op-amp connected in a linear feedback loop to drive first and second current legs based on a voltage reference. An output driver includes a load capacitance across which the regulated voltage is output, and further includes a ratio-driven current mirror having a mirror ratio defined by relative sizes of active devices in the first and second current legs, as compared with relative sizes of active devices in the output driver. Because the output driver and its load capacitance are provided outside the linear feedback loop, large values for the load capacitance can be selected without destabilization of the feedback loop. Thus, the value of the load capacitance can be chosen at any value according to frequency rejection requirements.
Abstract:
A buffer for the input to an A/D converter operates in two stages. During the first stage, the input is not provided directly to the A/D converter; rather, a buffered output which corresponds to the input is provided to the A/D converter so as to pre-charge the sampling capacitor of the A/D converter to a value that is substantially close to the input. In the second stage, the input is provided directly to the A/D converter, which charges its sampling capacitor to the value of the input. Because the sampling capacitor is pre-charged to a value that is substantially close to the input, and because the sampling capacitor is charged to this value through a buffer, reflections back into the input which otherwise might have been caused by a difference between the value stored on the sampling capacitor and the input are largely avoided.
Abstract:
Method determining lookup table (“LUT”) for embedding watermark. For each quantization cell, calculating probabilities that signal point falls into cell. Selecting cell by probabilities. Setting LUT value to watermark value with largest probability, subject to run constraint. For remaining cells, repeating selecting and setting steps. Other method determining quantization ensemble by calculating probability density function for signal points where the watermark value to be embedded. Distortion and robustness functions are formulated. Given robustness or distortion is selected. Functions optimized, and ensemble of quantizers determined with parameters that comply. Other method quantizing in association with lossy compression. Strength of compression determined. Adapting strength of watermark with strength of compression by a mapping. Other method selecting points for embedding watermark. Determine threshold between large and small signal points using statistical method. Select signal points for embedding according to threshold. Also, processors, computer programs, and systems.
Abstract:
A compensation device that can include a bias-able device, a bias circuit that provides the bias-able device with a bias current, a signal conditioner selectively coupled to the bias-able device, and an emulator. The signal conditioner and emulator can divert current from the bias-able device in an operational and calibration mode, respectively. In calibration mode, the emulator generates a compensation current that is combined with a sense current so that the sense current equals the bias current.