摘要:
This high-strength hot-rolled steel sheet having excellent local deformability contains, in mass %, C: 0.07% to 0.20%; Si: 0.001% to 2.5%; Mn: 0.01% to 4.0%; P: 0.001% to 0.15%; S: 0.0005% to 0.03%; Al: 0.001% to 2.0%; N: 0.0005% to 0.01%; and O: 0.0005% to 0.01%; and a balance being composed of iron and inevitable impurities, in which an area ratio of bainite in a metal structure is 95% or more, at a sheet thickness center portion being a range of ⅝ to ⅜ in sheet thickness from the surface of the steel sheet, an average value of pole densities of the {100} to {223} orientation group is 4.0 or less, and a pole density of the {332} crystal orientation is 5.0 or less, and a mean volume diameter of crystal grains in the metal structure is 10 μm or less.
摘要:
This high-strength cold-rolled steel sheet contains, in mass %, C: 0.02% to 0.20%; Si: 0.001% to 2.5%; Mn: 0.01% to 4.0%; P: 0.001% to 0.15%; S: 0.0005% to 0.03%; Al: 0.001% to 2.0%; N: 0.0005% to 0.01%; and O: 0.0005% to 0.01%; in which Si+Al is limited to less than 1.0%, and a balance being composed of iron and inevitable impurities, in which an area ratio of bainite in a metal structure is 95% or more, at a sheet thickness center portion being a range of ⅝ to ⅜ in sheet thickness from the surface of the steel sheet, an average value of pole densities of the {100} to {223} orientation group is 4.0 or less, and a pole density of the {332} crystal orientation is 5.0 or less, and a mean volume diameter of crystal grains in the metal structure is 7 μm or less.
摘要:
A hot-rolled steel sheet satisfies that average pole density of orientation group of {100} to {223} is 1.0 to 5.0 and pole density of crystal orientation {332} is 1.0 to 4.0. Moreover, the hot-rolled steel sheet includes, as a metallographic structure, by area %, ferrite and bainite of 30% to 99% in total and martensite of 1% to 70%. Moreover, the hot-rolled steel sheet satisfies following Expressions 1 and 2 when area fraction of the martensite is defined as fM in unit of area %, average size of the martensite is defined as dia in unit of μm, average distance between the martensite is defined as dis in unit of μm, and tensile strength of the steel sheet is defined as TS in unit of MPa. dia≦13 μm (Expression 1) TS/fM×dis/dia≧500 (Expression 2)
摘要:
This high strength hot-rolled steel sheet includes: in terms of percent by mass, C: 0.05 to 0.12%; Si: 0.8 to 1.2%; Mn: 1.6 to 2.2%; Al: 0.30 to 0.6%; P: 0.05% or less; S: 0.005% or less; and N: 0.01% or less, with the remainder being Fe and unavoidable impurities, wherein a microstructure includes specific ranges (in area %) of ferrite phases as well as martensite phases, and a maximum concentration of Al detected by a glow discharge emission spectroscopic analysis is in a range of 0.75 mass % or less in a region from a surface of the steel sheet to a thickness of 500 nm after being acid-pickled.
摘要:
A cold-rolled steel sheet satisfies that an average pole density of an orientation group of {100} to {223} is 1.0 to 5.0, a pole density of a crystal orientation {332} is 1.0 to 4.0, a Lankford-value rC in a direction perpendicular to a rolling direction is 0.70 to 1.50, and a Lankford-value r30 in a direction making an angle of 30° with the rolling direction is 0.70 to 1.50. Moreover, the cold-rolled steel sheet includes, as a metallographic structure, by area %, a ferrite and a bainite of 30% to 99% in total and a martensite of 1% to 70%.
摘要:
This high strength hot-rolled steel sheet includes: in terms of percent by mass, C: 0.05 to 0.12%; Si: 0.8 to 1.2%; Mn: 1.6 to 2.2%; Al: 0.30 to 0.6%; P: 0.05% or less; S: 0.005% or less; and N: 0.01% or less, with the remainder being Fe and unavoidable impurities, wherein a microstructure includes specific ranges (in area %) of ferrite phases as well as martensite phases, and a maximum concentration of Al detected by a glow discharge emission spectroscopic analysis is in a range of 0.75 mass % or less in a region from a surface of the steel sheet to a thickness of 500 nm after being acid-pickled.
摘要:
The present invention provides: a high-strength high-ductility hot-dip galvanized steel sheet and hot-dip galvannealed steel sheet having high fatigue resistance and corrosion resistance; a high-strength hot-dip galvanized steel sheet excellent in ductility, which improves non-plating defects and plating adhesion after severe deformation, and a method of producing the same; a high-strength and high-ductility hot-dip galvanized steel sheet having high fatigue resistance and corrosion resistance; a high-strength hot-dip galvanized steel sheet and hot-dip galvannealed steel sheet having superior appearance and workability, which suppresses the generation of non-plating defects, and a method of producing the same; and a high-strength hot-dip galvannealed steel sheet and a high-strength hot-dip galvanized steel sheet, which suppress non-plating defects and surface defects and have both corrosion resistance, in particular corrosion resistance in an environment containing chlorine ion, and high ductility, and a method of producing the same.
摘要:
The present invention provides: a high-strength high-ductility hot-dip galvanized steel sheet and hot-dip galvannealed steel sheet having high fatigue resistance and corrosion resistance; a high-strength hot-dip galvanized steel sheet excellent in ductility, which improves non-plating defects and plating adhesion after severe deformation, and a method of producing the same; a high-strength and high-ductility hot-dip galvanized steel sheet having high fatigue resistance and corrosion resistance; a high-strength hot-dip galvanized steel sheet and hot-dip galvannealed steel sheet having superior appearance and workability, which suppresses the generation of non-plating defects, and a method of producing the same; and a high-strength hot-dip galvannealed steel sheet and a high-strength hot-dip galvanized steel sheet, which suppress non-plating defects and surface defects and have both corrosion resistance, in particular corrosion resistance in an environment containing chlorine ion, and high ductility, and a method of producing the same.
摘要:
The present invention provides a steel pipe excellent in formability during hydraulic forming and the like and a method to produce the same, and more specifically: a steel pipe excellent in formability having an r-value of 1.4 or larger in the axial direction of the steel pipe, and the property that the average of the ratios of the X-ray intensity in the orientation component group of {110} to {332} on the plane at the center of the steel pipe wall thickness to the random X-ray intensity is 3.5 or larger, and/or the ratio of the X-ray intensity in the orientation component of {110} on the plane at the center of the steel pipe wall thickness to the random X-ray intensity is 5.0 or larger; and a method to produce a steel pipe excellent in formability characterized by heating the steel pipe having the property that the ratio of the X-ray intensity in every one of the orientation components of {001} , {116} , {114} and {112} on the plane at the center of the mother pipe wall thickness to the random X-ray intensity is 3 or smaller to a temperature in the range from 650 to 1,200° C. and by applying working under a condition of a diameter reduction ratio of 30% or more and a wall thickness reduction ratio of 5 to 30%.
摘要:
The present invention provides a steel sheet excellent in workability, which may be used for components of an automobile or the like, and a method for producing the same. More specifically, according to one exemplary embodiment of the present invention, a steel sheet excellent in workability, including in mass, 0.08 to 0.25% C, 0.001 to 1.5% Si, 0.01 to 2.0% Mn, 0.001 to 0.06% P, at most 0.05% S, 0.001 to 0.007% N, 0.008 to 0.2% Al, at least 0.01% Fe. The steel sheet having an average r-value of at least 1.2, an r-value in the rolling direction of at least 1.3, an r-value in the direction of 45 degrees to the rolling direction of at least 0.9, and an r-value in the direction of a right angle to the rolling direction of at least 1.2.