Abstract:
Provided are a plated steel sheet and a method for manufacturing same, the plated steel sheet comprising: a base steel sheet; a Zn—Mg—Al plating layer provided on at least one surface of the base steel sheet; and an Fe—Al inhibition layer provided between the base steel sheet and the Zn—Mg—Al plating layer. The plating layer comprises, by weight %, 4 to 10% of Mg and 5.1-25% of Al and the remainder being Zn and unavoidable impurities with respect to components not including iron (Fe) diffused from the base steel sheet. The plating layer comprises a 24-50% MgZn2 phase in phase fraction. In the MgZn2 phase, an Al single phase is present in the ratio of 1-30% relative to the cross-sectional area of the total MgZn2 phase.
Abstract:
A steel sheet having a tensile strength (TS) of 1180 MPa or more, high LME resistance, and good weld fatigue properties. The steel sheet has a specific chemical composition and a specific steel microstructure. Crystal grains containing an oxide of Si and/or Mn in a region within 4.9 μm in a thickness direction from a surface of the steel sheet have an average grain size in the range of 3 to 10 μm, the lowest Si concentration LSi and the lowest Mn concentration LMn in the region within 4.9 μm in the thickness direction from the surface of the steel sheet and a Si concentration TSi and a Mn concentration TMn at a quarter thickness position of the steel sheet satisfy a specified formula.
Abstract:
This cold-rolled steel sheet has a predetermined chemical composition, in which a metallographic structure of a t/4 portion, which is at a ¼ position of a sheet thickness t from a surface of the cold-rolled steel sheet in a sheet thickness direction has a predetermined structure, and in both an edge portion, which is at a position 50 mm away from an end portion of the cold-rolled steel sheet in a width direction, and a center portion of the cold-rolled steel sheet in the width direction, a metallographic structure of a 20 μm portion, which is at a position 20 μm away from the surface in the sheet thickness direction, includes, by volume percentage, ferrite and bainite: 75.0% or more and 100.0% or less in total, and martensite and tempered martensite: 0.0% or more and 25.0% or less in total, an average grain size of the martensite and the tempered martensite in the metallographic structure of the 20 μm portion is 5.0 μm or less, and a metallographic structure of a 75 μm portion, which is at a position 75 μm away from the surface in the sheet thickness direction, includes, by volume percentage, ferrite and bainite: 0.0% or more and 15.0% or less in total.
Abstract:
Provided are a plated steel sheet and a method for manufacturing same, the plated steel sheet comprising: a base steel sheet; a Zn—Mg—Al plating layer provided on at least one surface of the base steel sheet; and an Fe—Al inhibition layer provided between the base steel sheet and the Zn—Mg—Al plating layer. The plating layer comprises, by weight %, 4 to 10% of Mg and 5.1-25% of Al and the remainder being Zn and unavoidable impurities with respect to components not including iron (Fe) diffused from the base steel sheet. The plating layer comprises a 24-50% MgZn2 phase in phase fraction. In the MgZn2 phase, an Al single phase is present in the ratio of 1-30% relative to the cross-sectional area of the total MgZn2 phase.
Abstract:
To provide a galvanized steel sheet having high strength; specifically, with a tensile strength of 1160 MPa or more and excellent resistance spot weldability. A chemical composition of a base steel sheet contains one or more of Ti, Nb, V, and Zr: 0.02% or more and 0.20% or less in total, and an amount of diffusible hydrogen in a zinc or zinc alloy coating layer is 0.40 mass ppm or less.
Abstract:
A galvanized steel sheet has formability and crashworthiness, consists of 0.03% to 0.13% C, 1.0% to 2.0% Si, 2.4% to 3.5% Mn, 0.001% to 0.05% P, 0.0001% to 0.01% S, 0.001% to 0.1% Al, 0.0005% to 0.01% N, and 0.0003% to 0.01% B on a mass basis; and optionally contains at least one selected from the following A-C: A: at least one selected from the group consisting of 0.0005% to 0.1% Ti and 0.0005% to 0.05% Nb on a mass basis; B: at least one selected from the group consisting of 0.01% to 1.0% Mo, 0.01% to 2.0% Ni, and 0.01% to 2.0% Cu on a mass basis; and C: 0.001% to 0.005% Ca on a mass basis; the remainder being Fe and unavoidable impurities, and a microstructure containing a tempered martensitic phase and a bainitic phase such that the sum of an area fraction of the tempered martensitic phase and an area fraction of the bainitic phase is 30% or more, the area fraction of the tempered martensitic phase is 30% or more in the absence of the bainitic phase, wherein a distance of closest approach of the tempered martensitic phase is 10 μm or less and contents of C, Mn, and B satisfy (1): (% Mn)+1000×(% B)≥35×(% C) (1).
Abstract:
A hot-dip galvanized steel sheet having a good appearance and good adhesion to a coating, the hot-dip galvanized steel sheet having a composition including, on a mass basis: C: 0.20% to 0.50%, Si: 0.1% to 3.0%, Mn: 0.5% to 3.0%, P: 0.001% to 0.10%, Al: 0.01% to 3.00%, and S: 0.200% or less, a remainder being Fe and incidental impurities, wherein the hot-dip galvanized steel sheet includes an internal oxidation layer and a decarburized layer, the internal oxidation layer having a thickness of 4 μm or less, the decarburized layer having a thickness of 16 μm or less, and 50% or more by area of the internal oxidation layer is composed of a Si oxide containing Fe and/or Mn represented by Fe2XMn2-2XSiOY, wherein X ranges from 0 to 1, and Y is 3 or 4.
Abstract:
A galvanized steel sheet has formability and crashworthiness, consists of 0.03% to 0.13% C, 1.0% to 2.0% Si, 2.4% to 3.5% Mn, 0.001% to 0.05% P, 0.0001% to 0.01% S, 0.001% to 0.1% Al, 0.0005% to 0.01% N, and 0.0003% to 0.01% B on a mass basis; and optionally contains at least one selected from the following A-C: A: at least one selected from the group consisting of 0.0005% to 0.1% Ti and 0.0005% to 0.05% Nb on a mass basis; B: at least one selected from the group consisting of 0.01% to 1.0% Mo, 0.01% to 2.0% Ni, and 0.01% to 2.0% Cu on a mass basis; and C: 0.001% to 0.005% Ca on a mass basis; the remainder being Fe and unavoidable impurities, and a microstructure containing a tempered martensitic phase and a bainitic phase such that the sum of an area fraction of the tempered martensitic phase and an area fraction of the bainitic phase is 30% or more, the area fraction of the tempered martensitic phase is 30% or more in the absence of the bainitic phase, wherein a distance of closest approach of the tempered martensitic phase is 10 μm or less and contents of C, Mn, and B satisfy (1): (% Mn)+1000×(% B)≧35×(% C) (1).
Abstract:
The present disclosure relates to a high-strength hot-dip galvannealed steel sheet excellent in bake hardenability and bendability and having a component composition containing, in mass %, C: from 0.05 to 030%, Si: from 0.5 to 3.0%, Mn: from 0.2 to 3.0%, P: from 0 to 0.10%, S: from 0 to 0.010%, N: form 0 to 0.010%, and Al: from 0.001 to 0.10%, with the remainder being iron and unavoidable impurities. The steel sheet has a steel structure containing, in terms of area percentage, martensite: form 50 to 85% and ferrite: 0% or more and less than 5%, with the remainder being bainite. The steel sheet has a dislocation density of 5.0×1015 m−2 or more, a solute carbon amount of 0.08 mass % or more and a tensile strength of 1180 MPa or more.
Abstract:
There is provided a high-strength galvanized steel sheet including, on a mass percent basis, C: more than 0.060% and 0.13% or less, Si: 0.01% or more and 0.7% or less, Mn: 1.0% or more and 3.0% or less, P: 0.005% or more and 0.100% or less, S: 0.010% or less, sol.Al: 0.005% or more and 0.100% or less, N: 0.0100% or less, Nb: 0.005% or more and 0.10% or less, Ti: 0.03% or more and 0.15% or less, and the balance comprising Fe and incidental impurities, satisfying the relationship of (Nb/93+Ti*/48)/(C/12)>0.08 (wherein Ti*=Ti−(48/14)N−(48/32)S). The high-strength galvanized steel sheet has a structure including ferrite and martensite. The ferrite has an average grain diameter of 15 μm or less and an area percentage of 80% or more. The martensite has an area percentage of 1% or more and 15% or less.