Abstract:
A process for providing an improved hermetically sealed capacitor which includes the steps of applying a solder and a flux to an interior surface of a case; flowing the solder onto the interior surface; remove flux thereby forming a flux depleted solder; inserting the capacitive element into the casing; reflowing the flux depleted solder thereby forming a solder joint between the case and the solderable layer; and sealing the case.
Abstract:
An improved capacitor is provided wherein the capacitor has an improved bond between the anode and anode wire. The anode comprises a pressed anode powder comprising a first density region and a second density region wherein the second density region has a higher density than the first density region. An anode wire extends into the second density region wherein the anode wire in the second density region is distorted by compression. This allows for better utilization of the metal powder surface area by allowing a lower bulk press density and lower sinter temperature while still achieving the necessary wire pull strength. In addition, this invention when utilized with deoxidation steps, results in sufficient wire pull strengths not possible otherwise.
Abstract:
An improved capacitor is provided wherein the capacitor has an improved bond between the anode and anode wire. The anode comprises a pressed anode powder comprising a first density region and a second density region wherein the second density region has a higher density than the first density region. An anode wire extends into the second density region wherein the anode wire in the second density region is distorted by compression. This allows for better utilization of the metal powder surface area by allowing a lower bulk press density and lower sinter temperature while still achieving the necessary wire pull strength. In addition, this invention when utilized with deoxidation steps, results in sufficient wire pull strengths not possible otherwise.
Abstract:
An improved capacitor is provided wherein the capacitor has an improved bond between the anode and anode wire. The anode comprises a pressed anode powder comprising a first density region and a second density region wherein the second density region has a higher density than the first density region. An anode wire extends into the second density region wherein the anode wire in the second density region is distorted by compression. This allows for better utilization of the metal powder surface area by allowing a lower bulk press density and lower sinter temperature while still achieving the necessary wire pull strength. In addition, this invention when utilized with deoxidation steps, results in sufficient wire pull strengths not possible otherwise.
Abstract:
A process for providing an improved hermetically sealed capacitor which includes the steps of applying a solder and a flux to an interior surface of a case; flowing the solder onto the interior surface; remove flux thereby forming a flux depleted solder; inserting the capacitive element into the casing; reflowing the flux depleted solder thereby forming a solder joint between the case and the solderable layer; and sealing the case.