Abstract:
Method for analysis of hydrocarbon potential of subterranean regions by generating surfaces or geobodies and analyzing them for hydrocarbon indications. Reflection-based surfaces may be automatically created in a topologically consistent manner where individual surfaces do not overlap themselves and sets of multiple surfaces are consistent with stratigraphic superposition principles. Initial surfaces are picked from the seismic data (41), then broken into smaller parts (“patches”) that are predominantly topologically consistent (42), whereupon neighboring patches are merged in a topologically consistent way (43) to form a set of surfaces that are extensive and consistent (“skeleton”). Surfaces or geobodies thus extracted may be automatically analyzed and rated (214) based on a selected measure (213) such as AVO classification or one or more other direct hydrocarbon indicators (“DHI”). Topological consistency for one or more surfaces may be defined as no self overlap plus local and global consistency among multiple surfaces (52).
Abstract:
Method for identifying geologic features from geophysical or attribute data using windowed principal component (22), or independent component, or diffusion mapping (61) analysis. Subtle features are made identifiable in partial or residual data volumes. The residual data volumes (24) are created by (36) eliminating data not captured by the most prominent principal components (14). The partial data volumes are created by (35) projecting the data (21) on to selected principal components (22, 61). Geologic features may also be identified from pattern analysis (77) or anomaly volumes (62, 79) generated with a variable-scale data similarity matrix (73). The method is suitable for identifying physical features indicative of hydrocarbon potential.
Abstract:
An automated method for texture segmentation (11) of geophysical data volumes, where texture is defined by double-window statistics of data values, the statistics being generated by a smaller pattern window moving around within a larger sampling window (12). A measure of “distance” between two locations is selected based on similarity between the double-window statistics from sampling windows centered at the two locations (13). Clustering of locations is then based on distance proximity (14).
Abstract:
The present invention is a method for clustering data points. The method represents data-points as vertices of a graph (a well-known mathematical construct) with distance-weighted arcs (lines joining each paid of points). The method then involves sorting the arcs in increasing order of their weights and adding them in ascending order, at each stage determining the number of connected components in the graph and the length of the longest added edge. The longest edge is a measure of the quality of the clustering (low values are good), and the connected components are the clusters.
Abstract:
Method for identifying geologic features from geophysical or attribute data using windowed principal component (22), or independent component, or diffusion mapping (61) analysis. Subtle features are made identifiable in partial or residual data volumes. The residual data volumes (24) are created by (36) eliminating data not captured by the most prominent principal components (14). The partial data volumes are created by (35) projecting the data (21) on to selected principal components (22, 61). Geologic features may also be identified from pattern analysis (77) or anomaly volumes (62, 79) generated with a variable-scale data similarity matrix (73). The method is suitable for identifying physical features indicative of hydrocarbon potential.
Abstract:
A fuel management system mounted on a vehicle is operative to feed an individual grade or a mixture of grades of relatively low, intermediate, and high RON fuels, from respective tanks to an associated internal combustion engine. The system includes an on board separation unit (OBS unit) for receiving and separating intermediate RON fuel, from an IRON tank into low and high RON fuels, LRON and HRON, respectively, for delivery to LRON and HRON tanks, respectively. The production rate of the LRON and HRON fuels by the OBS unit is controlled to substantially match the consumption requirements of the engine at any given time for the LRON and HRON fuels.
Abstract:
Techniques and systems for control of optical switching arrays are described. A switch array controller according to an aspect of the present invention operates so as to achieve reduced power consumption and maintain crosstalk within acceptable limits. Various rules are applied in order to insure that the desired criteria are met. In order to reduce transient effects, switching from one output to another is accomplished in a sequence chosen to maximize the number of transitions occurring in those portions of the array not carrying a signal, and to minimize the number of transitions that occur in portions of the array carrying the signal. Transitions are made in the portion of the array to which the signal will be directed, then a switch is transitioned between the old and new signal paths, and finally further transitions are made in the portion of the array within which the signal was previously directed.
Abstract:
A method for designing a wireless telecommunications system having a plurality of cells is provided. In one embodiment of such a method, a call demand per cell is estimated, and a channel demand based thereon is determined on a cell-by-cell basis. The cell-by-cell channel demand is used to provide a reasonably tight upper bound on the number of communication channels required to satisfy the system-wide call demand. It is implicit in the procedure for estimating the upper bound that no mutually "interfering" base stations use the same channel (i.e., frequency). "Cliques" of mutually-interfering base stations or cells are defined. A channel demand is determined for each clique by adding up the channel demand for each cell in the clique. The greatest channel demand of all cliques determines a "maximum clique demand" .omega..sup.d. The upper bound on the number of channels required to satisfy the system-wide call demand is given by the expression: .chi..sup.d .ltoreq.17/12.multidot..omega..sup.d when mutually-interfering cells are adjacent cells, and is given by the expression: .chi..sup.d .ltoreq.2.multidot..omega..sup.d -d.sub.min when mutually interfering cells are adjacent cells and next-to-adjacent cells, wherein d.sub.min is a minimum channel demand of all cells in the system. Having a reasonably-good estimate of the upper bound on the system-wide channel requirement, a wireless service provider may then seek to obtain or allot a commensurate amount of frequency spectrum to support its system.
Abstract:
Methods for drilling a wellbore within a subsurface region and drilling assemblies and systems that include and/or utilize the methods are disclosed herein. The methods include receiving a plurality of drilling performance indicator maps, normalizing the plurality of drilling performance indicator maps to generate a plurality of normalized maps, adaptive trending of the plurality of drilling performance indicator maps to generate a plurality of trended maps, summing the plurality of trended maps to generate an objective map, selecting a desired operating regime from the objective map, and adjusting at least one drilling operational parameter of a drilling rig based, at least in part, on the desired operating regime.
Abstract:
A controller system, comprising: a controller configured to control toward a desired process value, an arrangement to repetitively measure a value of the desired process value; wherein the controller is configured to execute a routine that: determines a moving average of the measured values, determines a moving standard deviation of the measured values, defines an outer zone of measured values with the determined moving average and a first plurality of the determined moving standard deviation, defines an inner zone of measured values with the determined moving average and a second plurality of the determined moving standard deviation, monitors the measured values for the occurrence of a first statistical event with respect to the outer zone and adjusting a gain of the controller by a first factor upon detection of the first statistical event, monitors the measured values for the occurrence of a second statistical event with respect to the inner zone and adjusting a gain of the controller by a second factor upon detection of the second statistical event.